Tm,Ho:KLu(WO₄)₂ laser mode-locked near 2 μm by single-walled carbon nanotubes.

We demonstrate passive mode-locking of a Tm,Ho-codoped crystalline laser operating on the Ho³⁺-ion transition ⁵I₇→⁵I₈ near 2 µm using a single-walled carbon nanotube saturable absorber. The Tm,Ho:KLu(WO₄)₂ laser emits nearly transform-limited pulses with duration of 2.8 ps at a repetition rate of 91 MHz. The output power amounts to 97 mW.

[1]  U. Keller Recent developments in compact ultrafast lasers , 2003, Nature.

[2]  Xavier Mateos,et al.  Femtosecond Pulses near 2 µm from a Tm:KLuW Laser Mode-Locked by a Single-Walled Carbon Nanotube Saturable Absorber , 2012 .

[3]  R. Sundaram,et al.  2 μm solid-state laser mode-locked by single-layer graphene , 2012, 1210.7042.

[4]  W. Gao,et al.  Diode-pumped mode-locked femtosecond Tm:CLNGG disordered crystal laser. , 2012, Optics letters.

[5]  Kazuhiro Asai,et al.  Spectroscopic and diode-pumped-laser properties of TM,Ho:YLF; Tm, Ho:LuLF; and Tm,Ho:LuAG crystals: a comparative study , 2003 .

[6]  D K Killinger,et al.  Development of a Tunable, Narrow-Linewidth, CW 2.066-mum Ho:YLF Laser for Remote Sensing of Atmospheric CO(2) and H(2)O. , 1998, Applied optics.

[7]  R. Halm,et al.  Optical Space Communications: Esa Activities And Plans , 1987, Photonics West - Lasers and Applications in Science and Engineering.

[8]  Hermann A. Haus,et al.  Broadly tunable sub‐500 fs pulses from an additive‐pulse mode‐locked thulium‐doped fiber ring laser , 1995 .

[9]  Rüdiger Paschotta,et al.  Q-switching stability limits of continuous-wave passive mode locking , 1999 .

[10]  Günter Huber,et al.  175 fs Tm:Lu2O3 laser at 2.07 µm mode-locked using single-walled carbon nanotubes. , 2012, Optics express.

[11]  G. Galzerano,et al.  Passive mode-locking of a diode-pumped Tm:GdLiF4 laser , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[12]  W Sibbett,et al.  Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2 μm. , 2011, Optics express.

[13]  Rachel Grange,et al.  Low-loss GaInNAs saturable absorber mode locking a 1.3-μm solid-state laser , 2004 .

[14]  W Sibbett,et al.  Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 microm. , 2010, Optics letters.

[15]  Günter Steinmeyer,et al.  Passive mode-locking of a Tm-doped bulk laser near 2 microm using a carbon nanotube saturable absorber. , 2009, Optics express.

[16]  Leonard A. Pomeranz,et al.  Efficient mid-infrared laser using 1.9-µm-pumped Ho:YAG and ZnGeP 2 optical parametric oscillators , 2000 .

[17]  Xavier Mateos,et al.  Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host , 2007 .

[18]  T Dekorsy,et al.  Mode-locked Tm,Ho:YAP laser around 2.1 μm. , 2013, Optics express.

[19]  Günter Steinmeyer,et al.  Boosting the Non Linear Optical Response of Carbon Nanotube Saturable Absorbers for Broadband Mode‐Locking of Bulk Lasers , 2010 .

[20]  Wilson Sibbett,et al.  Broadly tunable femtosecond Tm:Lu2O3 ceramic laser operating around 2070 nm. , 2012, Optics express.

[21]  Animesh Jha,et al.  Femtosecond mode-locked Tm(3+) and Tm(3+)-Ho(3+) doped 2 μm glass lasers. , 2010, Optics express.

[22]  Yonggang Wang,et al.  2 μm passive Q-switched mode-locked Tm3+:YAP laser with single-walled carbon nanotube absorber , 2012 .

[23]  Zhipei Sun,et al.  Nanotube–Polymer Composites for Ultrafast Photonics , 2009 .

[24]  Thomas Dekorsy,et al.  Mode-locking of 2 Μm Tm,ho:yag Laser with Gainas and Gasb-based Sesams References and Links , 2022 .

[25]  E. Chicklis,et al.  High-power/high-brightness diode-pumped 1.9-/spl mu/m thulium and resonantly pumped 2.1-/spl mu/m holmium lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[26]  Evan P. Chicklis,et al.  High-Power/High-Brightness Diode-Pumped 1.9- m Thulium and Resonantly Pumped 2.1- m Holmium Lasers , 2000 .

[27]  Marc Eichhorn,et al.  Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions , 2008, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[28]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[29]  Eric Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[30]  W Sibbett,et al.  Femtosecond (191 fs) NaY(WO4)2 Tm,Ho-codoped laser at 2060 nm. , 2010, Optics letters.

[31]  Gianluca Galzerano,et al.  Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 μm. , 2011, Optics letters.

[32]  D. E. Spock,et al.  190 fs passively mode-locked thulium fiber laser with low threshold , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.

[33]  U. Griebner,et al.  Crystal growth, optical spectroscopy, and continuous-wave laser operation of co-doped (Ho,Tm):KLu(WO 4 ) 2 monoclinic crystals , 2014 .