Elucidating the inhibition mechanism of HIV-1 non-nucleoside reverse transcriptase inhibitors through multicopy molecular dynamics simulations.

[1]  S. Sarafianos,et al.  Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. , 2009, Journal of molecular biology.

[2]  Elio A. Abbondanzieri,et al.  Slide into Action: Dynamic Shuttling of HIV Reverse Transcriptase on Nucleic Acid Substrates , 2008, Science.

[3]  J. Andrew McCammon,et al.  Discovery of drug-like inhibitors of an essential RNA-editing ligase in Trypanosoma brucei , 2008, Proceedings of the National Academy of Sciences.

[4]  Jayanta Mukhopadhyay,et al.  The RNA Polymerase “Switch Region” Is a Target for Inhibitors , 2008, Cell.

[5]  F. Maggiolo,et al.  Rilpivirine, a non-nucleoside reverse transcriptase inhibitor for the treatment of HIV infection. , 2008, Current opinion in investigational drugs.

[6]  E. Seminari,et al.  Etravirine for the treatment of HIV infection , 2008, Expert review of anti-infective therapy.

[7]  J Andrew McCammon,et al.  Mapping the nucleotide and isoform-dependent structural and dynamical features of Ras proteins. , 2008, Structure.

[8]  D. Stammers,et al.  Structural basis for drug resistance mechanisms for non-nucleoside inhibitors of HIV reverse transcriptase. , 2008, Virus research.

[9]  N. Sluis-Cremer,et al.  Probing nonnucleoside inhibitor‐induced active‐site distortion in HIV‐1 reverse transcriptase by transient kinetic analyses , 2007, Protein science : a publication of the Protein Society.

[10]  C. Mathers,et al.  Projections of Global Mortality and Burden of Disease from 2002 to 2030 , 2006, PLoS medicine.

[11]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[12]  Marcela Madrid,et al.  Effect of a bound non-nucleoside RT inhibitor on the dynamics of wild-type and mutant HIV-1 reverse transcriptase. , 2005, Journal of the American Chemical Society.

[13]  Andrew Owen,et al.  Mitochondria are sensors for HIV drugs. , 2005, Trends in pharmacological sciences.

[14]  S. Sarafianos,et al.  Taking aim at a moving target: designing drugs to inhibit drug-resistant HIV-1 reverse transcriptases. , 2004, Current opinion in structural biology.

[15]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[16]  Rudi Pauwels,et al.  New non-nucleoside reverse transcriptase inhibitors (NNRTIs) in development for the treatment of HIV infections. , 2004, Current opinion in pharmacology.

[17]  Ivet Bahar,et al.  Conformational changes in HIV-1 reverse transcriptase induced by nonnucleoside reverse transcriptase inhibitor binding. , 2004, Current HIV research.

[18]  J. Mongan,et al.  Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. , 2004, The Journal of chemical physics.

[19]  H. M. Vinkers,et al.  Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants. , 2004, Journal of medicinal chemistry.

[20]  P. Wolschann,et al.  Quantitative Structural Rearrangement of HIV-1 Reverse Transcriptase on Binding to Non-Nucleoside Inhibitors , 2004 .

[21]  P. Wolschann,et al.  Systematic Investigation of Non-Nucleoside Inhibitors of HIV-1 Reverse Transcriptase (NNRTIs) , 2004 .

[22]  R. Pomerantz,et al.  Twenty years of therapy for HIV-1 infection , 2003, Nature Medicine.

[23]  Xiaomin Luo,et al.  Steered molecular dynamics simulation on the binding of NNRTI to HIV-1 RT. , 2003, Biophysical journal.

[24]  Ivet Bahar,et al.  Inhibitor binding alters the directions of domain motions in HIV‐1 reverse transcriptase , 2002, Proteins.

[25]  J. Mccammon,et al.  Computational drug design accommodating receptor flexibility: the relaxed complex scheme. , 2002, Journal of the American Chemical Society.

[26]  Ettore Novellino,et al.  Non-nucleoside HIV-1 reverse transcriptase (RT) inhibitors: past, present, and future perspectives. , 2002, Current pharmaceutical design.

[27]  J. Madura,et al.  Molecular dynamics of HIV‐1 reverse transcriptase indicates increased flexibility upon DNA binding , 2001, Proteins.

[28]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[29]  E. De Clercq New developments in anti-HIV chemotherapy , 2001, Current medicinal chemistry.

[30]  D I Stuart,et al.  Binding of the Second Generation Non-nucleoside Inhibitor S-1153 to HIV-1 Reverse Transcriptase Involves Extensive Main Chain Hydrogen Bonding* , 2000, The Journal of Biological Chemistry.

[31]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[32]  E. Arnold,et al.  Major subdomain rearrangement in HIV‐1 reverse transcriptase simulated by molecular dynamics , 1999, Proteins.

[33]  Andrew E. Torda,et al.  The GROMOS biomolecular simulation program package , 1999 .

[34]  R L Jernigan,et al.  Collective motions in HIV-1 reverse transcriptase: examination of flexibility and enzyme function. , 1999, Journal of molecular biology.

[35]  A. D. Clark,et al.  Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody Fab fragment at 2.8 A resolution. , 1998, Journal of molecular biology.

[36]  A. D. Clark,et al.  Structures of Tyr188Leu mutant and wild-type HIV-1 reverse transcriptase complexed with the non-nucleoside inhibitor HBY 097: inhibitor flexibility is a useful design feature for reducing drug resistance. , 1998, Journal of molecular biology.

[37]  G L Verdine,et al.  Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. , 1998, Science.

[38]  G. Drin,et al.  Hinge-bending motions in annexins: molecular dynamics and essential dynamics of apo-annexin V and of calcium bound annexin V and I. , 1998, Protein engineering.

[39]  H. Berendsen,et al.  Domain motions in bacteriophage T4 lysozyme: A comparison between molecular dynamics and crystallographic data , 1998, Proteins.

[40]  M. Karplus,et al.  Locally accessible conformations of proteins: Multiple molecular dynamics simulations of crambin , 1998, Protein science : a publication of the Protein Society.

[41]  J B Findlay,et al.  Protein dynamics derived from clusters of crystal structures. , 1997, Biophysical journal.

[42]  K Schulten,et al.  Protein domain movements: detection of rigid domains and visualization of hinges in comparisons of atomic coordinates , 1997, Proteins.

[43]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[44]  D. V. van Aalten,et al.  Essential dynamics of lipase binding sites: the effect of inhibitors of different chain length. , 1997, Protein engineering.

[45]  A. D. Clark,et al.  Crystal structures of 8-Cl and 9-Cl TIBO complexed with wild-type HIV-1 RT and 8-Cl TIBO complexed with the Tyr181Cys HIV-1 RT drug-resistant mutant. , 1996, Journal of molecular biology.

[46]  H. Heumann,et al.  Strained template under the thumbs. How reverse transcriptase of human immunodeficiency virus type 1 moves along its template. , 1996, European journal of biochemistry.

[47]  D. M. F. Aalten,et al.  PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules , 1996, J. Comput. Aided Mol. Des..

[48]  Jianping Ding,et al.  Targeting HIV reverse transcriptase for anti-AIDS drug design: structural and biological considerations for chemotherapeutic strategies. , 1996, Drug design and discovery.

[49]  H J Berendsen,et al.  An efficient method for sampling the essential subspace of proteins. , 1996, Journal of biomolecular structure & dynamics.

[50]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[51]  H. Berendsen,et al.  Essential dynamics of the cellular retinol-binding protein--evidence for ligand-induced conformational changes. , 1995, Protein engineering.

[52]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[53]  Grubmüller,et al.  Predicting slow structural transitions in macromolecular systems: Conformational flooding. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[54]  R. Goody,et al.  Human immunodeficiency virus reverse transcriptase substrate-induced conformational changes and the mechanism of inhibition by nonnucleoside inhibitors. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[55]  G Vriend,et al.  The essential dynamics of thermolysin: Confirmation of the hinge‐bending motion and comparison of simulations in vacuum and water , 1995, Proteins.

[56]  Yvonne Jones,et al.  Mechanism of inhibition of HIV-1 reverse transcriptase by non-nucleoside inhibitors , 1995, Nature Structural Biology.

[57]  Yvonne Jones,et al.  High resolution structures of HIV-1 RT from four RT–inhibitor complexes , 1995, Nature Structural Biology.

[58]  K A Johnson,et al.  Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors , 1995, Science.

[59]  D W Rodgers,et al.  The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[60]  H. Berendsen,et al.  Essential dynamics of proteins , 1993, Proteins.

[61]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[62]  T. Steitz,et al.  Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. , 1992, Science.

[63]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[64]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[65]  H. Berendsen,et al.  A consistent empirical potential for water–protein interactions , 1984 .

[66]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[67]  J. Mccammon,et al.  Structural study of hinge bending in L-arabinose-binding protein. , 1984, The Journal of biological chemistry.

[68]  J A McCammon,et al.  Hinge-bending in L-arabinose-binding protein. The "Venus's-flytrap" model. , 1982, The Journal of biological chemistry.

[69]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[70]  E. Anderson Hudson et al. , 1977 .

[71]  A. Steinacker,et al.  A Spice Study of Silicon Sensor Strip Noise on Long Ladders , 2011 .

[72]  E. De Clercq,et al.  The design of drugs for HIV and HCV. , 2007, Nature reviews. Drug discovery.

[73]  D. Stammers,et al.  HIV reverse transcriptase structures: designing new inhibitors and understanding mechanisms of drug resistance. , 2005, Trends in pharmacological sciences.

[74]  S. Sarafianos,et al.  HIV-1 Reverse Transcriptase Structure , 2004 .

[75]  William J. Lennarz,et al.  Encyclopedia of biological chemistry , 2004 .

[76]  E. De Clercq,et al.  Non-nucleoside reverse transcriptase inhibitors (NNRTIs): past, present, and future. , 2004, Chemistry & biodiversity.

[77]  Jung-Hsin Lin,et al.  The relaxed complex method: Accommodating receptor flexibility for drug design with an improved scoring scheme. , 2003, Biopolymers.