Mechanism Elucidation of the cis–trans Isomerization of an Azole Ruthenium–Nitrosyl Complex and Its Osmium Counterpart

Synthesis and X-ray diffraction structures of cis and trans isomers of ruthenium and osmium metal complexes of general formulas (nBu4N)[cis-MCl4(NO)(Hind)], where M = Ru (1) and Os (3), and (nBu4N)[trans-MCl4(NO)(Hind)], where M = Ru (2) and Os (4) and Hind = 1H-indazole are reported. Interconversion between cis and trans isomers at high temperatures (80–130 °C) has been observed and studied by NMR spectroscopy. Kinetic data indicate that isomerizations correspond to reversible first order reactions. The rates of isomerization reactions even at 110 °C are very low with rate constants of 10–5 s–1 and 10–6 s–1 for ruthenium and osmium complexes, respectively, and the estimated rate constants of isomerization at room temperature are of ca. 10–10 s–1. The activation parameters, which have been obtained from fitting the reaction rates at different temperatures to the Eyring equation for ruthenium [ΔHcis-trans‡= 122.8 ± 1.3; ΔHtrans-cis‡= 138.8 ± 1.0 kJ/mol; ΔScis-trans‡= −18.7 ± 3.6; ΔStrans-cis‡= 31.8 ± 2.7 J/(mol·K)] and osmium [ΔHcis-trans‡= 200.7 ± 0.7; ΔHtrans-cis‡= 168.2 ± 0.6 kJ/mol; ΔScis-trans‡= 142.7 ± 8.9; ΔStrans-cis‡= 85.9 ± 3.9 J/(mol·K)] reflect the inertness of these systems. The entropy of activation for the osmium complexes is highly positive and suggests the dissociative mechanism of isomerization. In the case of ruthenium, the activation entropy for the cis to trans isomerization is negative [−18.6 J/(mol·K)], while being positive [31.0 J/(mol·K)] for the trans to cis conversion. The thermodynamic parameters for cis to trans isomerization of [RuCl4(NO)(Hind)]−, viz. ΔH° = 13.5 ± 1.5 kJ/mol and ΔS° = −5.2 ± 3.4 J/(mol·K) indicate the low difference between the energies of cis and trans isomers. The theoretical calculation has been carried out on isomerization of ruthenium complexes with DFT methods. The dissociative, associative, and intramolecular twist isomerization mechanisms have been considered. The value for the activation energy found for the dissociative mechanism is in good agreement with experimental activation enthalpy. Electrochemical investigation provides further evidence for higher reactivity of ruthenium complexes compared to that of osmium counterparts and shows that intramolecular electron transfer reactions do not affect the isomerization process. A dissociative mechanism of cis↔trans isomerization has been proposed for both ruthenium and osmium complexes.

[1]  Gabriel E Büchel,et al.  On the Electronic Structure of mer,trans‐[RuCl3(1H‐indazole)2(NO)], a Hypothetical Metabolite of the Antitumor Drug Candidate KP1019: An Experimental and DFT Study , 2013 .

[2]  T. Woike,et al.  Structural influence on the photochromic response of a series of ruthenium mononitrosyl complexes. , 2012, Inorganic chemistry.

[3]  Y. Lam,et al.  Osmium(VI) nitrido complexes bearing azole heterocycles: a new class of antitumor agents , 2012 .

[4]  Joseph W. Ziller,et al.  Synthesis, structure, and magnetism of an f element nitrosyl complex, (C5Me4H)3UNO. , 2012, Journal of the American Chemical Society.

[5]  M. Jakupec,et al.  Cellular accumulation and DNA interaction studies of cytotoxic trans-platinum anticancer compounds , 2012, JBIC Journal of Biological Inorganic Chemistry.

[6]  N. Russo,et al.  Mechanistic insight into protonolysis and cis-trans isomerization of benzylplatinum(II) complexes assisted by weak ligand-to-metal interactions. A combined kinetic and DFT study. , 2011, Inorganic chemistry.

[7]  L. González,et al.  Photochemical behavior of (bisphosphane)(η(2)-tolane)Pt(0) complexes. Part B: An insight from DFT calculations. , 2010, Dalton transactions.

[8]  M. Jakupec,et al.  Novel cis- and trans-configured bis(oxime)platinum(II) complexes: synthesis, characterization, and cytotoxic activity. , 2010, Inorganic chemistry.

[9]  Rosario Scopelliti,et al.  Isomerization mechanisms of stereolabile tris- and bis-bidentate octahedral cobalt(II) complexes: X-ray structure and variable temperature and pressure NMR kinetic investigations. , 2010, Inorganic chemistry.

[10]  Giovanni Scalmani,et al.  Continuous surface charge polarizable continuum models of solvation. I. General formalism. , 2010, The Journal of chemical physics.

[11]  K. Pierloot,et al.  Electronic structure of selected FeNO7 complexes in heme and non-heme architectures: a density functional and multireference ab initio study. , 2010, The journal of physical chemistry. B.

[12]  B. Delley,et al.  Photogeneration of nitrosyl linkage isomers in octahedrally coordinated platinum complexes in the red spectral range. , 2009, Inorganic chemistry.

[13]  Yi‐Hung Liu,et al.  Kinetic and mechanistic studies of geometrical isomerism in neutral square-planar methylpalladium complexes bearing unsymmetrical bidentate ligands of alpha-aminoaldimines. , 2009, Inorganic chemistry.

[14]  F. Roncaroli,et al.  Three redox states of nitrosyl: NO+, NO*, and NO-/HNO interconvert reversibly on the same pentacyanoferrate(II) platform. , 2009, Angewandte Chemie.

[15]  T. Woike,et al.  Necessary conditions for the photogeneration of nitrosyl linkage isomers. , 2009, Physical chemistry chemical physics : PCCP.

[16]  T. Woike,et al.  Photoinduced linkage isomerism of {RuNO}(6) complexes with bioligands and related chelators. , 2009, Dalton transactions.

[17]  George C Schatz,et al.  Highly accurate first-principles benchmark data sets for the parametrization and validation of density functional and other approximate methods. Derivation of a robust, generally applicable, double-hybrid functional for thermochemistry and thermochemical kinetics. , 2008, The journal of physical chemistry. A.

[18]  Michael J. Rose,et al.  Fiat Lux: selective delivery of high flux of nitric oxide (NO) to biological targets using photoactive metal nitrosyls. , 2008, Current opinion in chemical biology.

[19]  A. Akbari,et al.  Aryl, methyl-diplatinum complexes each with a metal-metal donor-acceptor bond and bridging 2-diphenylphosphinopyridine (PN) ligands: general synthetic approach and mechanism of isomerization. , 2007, Dalton transactions.

[20]  B. Frost,et al.  Isomerization of trans-[Ru(PTA)4Cl2] to cis-[Ru(PTA)4Cl2] in water and organic solvent: revisiting the chemistry of [Ru(PTA)4Cl2]. , 2007, Inorganic chemistry.

[21]  F. Roncaroli,et al.  New features in the redox coordination chemistry of metal nitrosyls {M-NO+ ; M-NO•; M-NO- (HNO)} , 2007 .

[22]  W. Kaim,et al.  New ruthenium nitrosyl complexes with tris(1-pyrazolyl)methane (tpm) and 2,2'-bipyridine (bpy) coligands. Structure, spectroscopy, and electrophilic and nucleophilic reactivities of bound nitrosyl. , 2006, Inorganic chemistry.

[23]  W. Kaim,et al.  The metal-NO interaction in the redox systems [Cl5Os(NO)]n-, n = 1-3, and cis-[(bpy)2ClOs(NO)]2+/+: calculations, structural, electrochemical, and spectroscopic results. , 2006, Inorganic chemistry.

[24]  L. Helm,et al.  WATER AND PROTON EXCHANGE PROCESSES ON METAL IONS , 2006 .

[25]  L. Helm,et al.  Inorganic and bioinorganic solvent exchange mechanisms. , 2005, Chemical reviews.

[26]  R. Scopelliti,et al.  Richness of isomerism in labile octahedral Werner‐type cobalt(II) complexes demonstrated by 19F NMR spectroscopy: structure and stability , 2004, Magnetic resonance in chemistry : MRC.

[27]  M. Imlau,et al.  Light-induced metastable states in oxalatenitrosylruthenium(II) and terpyridinenitrosylruthenium(II) complexes. , 2004, Inorganic Chemistry.

[28]  F. Neese,et al.  Structural, spectroscopic, and computational study of an octahedral, non-heme [Fe-NO](6-8) Series: [Fe(NO)(cyclam-ac)]2+/+/0. , 2004, Journal of the American Chemical Society.

[29]  Manfred Rudolph,et al.  Thermodynamic and kinetic data for adduct formation, cis-trans isomerization and redox reactions of ML4 complexes: a case study with rhodium- and iridium-tropp complexes in d8, d9 and d10 valence electron configurations (tropp=dibenzotropylidene phosphanes). , 2004, Chemistry.

[30]  L. Zakharov,et al.  Does α-fluorination affect the structural trans-influence and kinetic trans-effect of an alkyl ligand? molecular structures of Pd(TMEDA)(CH3)(RF) and a kinetic study of the trans to cis isomerization of Pt(TMEDA)(CH3)2I(RF) [RF = CF2CF3, CFHCF3, CH2CF3] , 2004 .

[31]  J. Mccleverty Chemistry of nitric oxide relevant to biology. , 2004, Chemical reviews.

[32]  L. Yellowlees,et al.  Coordination and release of NO by ruthenium–dimethylsulfoxide complexes—implications for antimetastases activity , 2003 .

[33]  M. Jakupec,et al.  Synthesis, X-ray diffraction structures, spectroscopic properties, and in vitro antitumor activity of isomeric (1H-1,2,4-triazole)Ru(III) complexes. , 2003, Inorganic chemistry.

[34]  E. Tuzcu,et al.  Nitroprusside in critically ill patients with left ventricular dysfunction and aortic stenosis. , 2003, The New England journal of medicine.

[35]  P. Legzdins,et al.  Coordination and organometallic chemistry of metal-NO complexes. , 2002, Chemical reviews.

[36]  I. Megson,et al.  Non-heme iron nitrosyls in biology. , 2002, Chemical reviews.

[37]  A. Pombeiro Electron-transfer induced isomerizations of coordination compounds , 2001 .

[38]  L. Baraldo Advances in the coordination chemistry of [M(CN)5L]nâ ions (M=Fe, Ru, Os) , 2001 .

[39]  G. Natile,et al.  In vitro and in vivo antitumour activity and cellular pharmacological properties of new platinum-iminoether complexes with different configuration at the iminoether ligands. , 1999, Journal of inorganic biochemistry.

[40]  Younsoo Kim,et al.  Trans-cis isomerization and structure of [R2Ga(mu-NHSiEt3)](2) (R = Me, Et) , 1999 .

[41]  W. Preetz,et al.  Darstellung, Kristallstrukturen, Schwingungsspektren und Normalkoordinatenanalysen der Tetrahalogeno-bis-Pyridin-Osmium(III)-Komplexecis-(n-Bu4N)[OsCl4Py2] undtrans-(n-Bu4N)[OsX4Py2], X = Cl, Br , 1999 .

[42]  W. Kaim,et al.  Reduction of the NO+ ligand in the pentacyanonitrosylosmate(II) ion , 1999 .

[43]  Benedetta Mennucci,et al.  New applications of integral equations methods for solvation continuum models: ionic solutions and liquid crystals , 1998 .

[44]  A. Haynes,et al.  CIS-TRANS ISOMERISM IN M(CO)2I4-(M = RH, IR) : KINETIC, MECHANISTIC AND SPECTROSCOPIC STUDIES , 1998 .

[45]  Jacopo Tomasi,et al.  Evaluation of Solvent Effects in Isotropic and Anisotropic Dielectrics and in Ionic Solutions with a Unified Integral Equation Method: Theoretical Bases, Computational Implementation, and Numerical Applications , 1997 .

[46]  Dai Ooyama,et al.  One-electron oxidation behavior of {MNO}6-type nitrosyl complexes having acetylacetonato ligand, [M(NO)Cl5−2n(acac)n]m (M=Ru, Os; n=1, 2; acac=acetylacetonato) , 1997 .

[47]  F. Cotton,et al.  W(2)Cl(4)(NR(2))(2)(PR'(3))(2) Molecules. 7. Preparation, Characterization, and Structures of W(2)Cl(4)(NHR)(2)(NH(2)R)(2) and W(2)Cl(4)(NHR)(2)(PMe(3))(2) (R = sec-Butyl and Cyclohexyl) and (31)P{(1)H} NMR Studies of Trans-to-Cis Isomerizations of W(2)Cl(4)(NHR)(2)(PMe(3))(2). , 1997, Inorganic Chemistry.

[48]  M. Carducci,et al.  Diffraction Studies of Photoexcited Crystals: Metastable Nitrosyl-Linkage Isomers of Sodium Nitroprusside , 1997 .

[49]  J. Atwood Inorganic and Organometallic Reaction Mechanisms , 1997 .

[50]  V. Bakhmutov,et al.  Synthesis, NMR Study, and Reactivity of Isomeric Early-Late Heterobimetallic Dihydrides. X-ray Crystal Structure of (PPh(3))HRu(&mgr;-H)(&mgr;-PMe(2)C(5)Me(4))(2)(&mgr;-Cl)ZrCl. , 1996, Inorganic chemistry.

[51]  Leo Radom,et al.  Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors , 1996 .

[52]  J. Bertrán,et al.  Dynamic Behavior in Solution of the Trans‐Hydridodihydrogen Complex [OsHCl(n2‐H2)(CO)(PiPr3)2]: Ab Initio and NMR Studies , 1996 .

[53]  J. S. Reid,et al.  The Analytical Calculation of Absorption in Multifaceted Crystals , 1995 .

[54]  M. Ashby Inverse Relationship between the Kinetic and Thermodynamic Stabilities of the Misdirected Ligand Complexes .DELTA./.LAMBDA.-(.delta./.lambda.-1,1'-Biisoquinoline)bis(2,2'-bipyridine)metal(II) (metal = Ruthenium, Osmium) , 1995 .

[55]  T. Meyer,et al.  Trans-Cis Isomerization in [Os(tpy)(Cl)2(N)]+ , 1995 .

[56]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[57]  S. Goswami,et al.  Isomeric dithiocyanate complexes of ruthenium(II), synthesis, characterization of all possible bond isomers of trans,cis-Ru(CNS)2L2 [L = 2-(arylazo)pyridine] and studies of isomerization , 1993 .

[58]  K. Lu,et al.  Isomerization, photoreaction, and structure studies of osmium complexes containing carboxamido and halide ligands , 1992 .

[59]  R. Romeo,et al.  A new reaction pathway for the geometrical isomerization of monoalkyl complexes of platinum(II) : kinetic behavior of cis-[Pt(PEt3)2(neopentyl)Cl] , 1991 .

[60]  Keiji Morokuma,et al.  Ab initio Molecular Orbital Studies of Catalytic Elementary Reactions and Catalytic Cycles of Transition-Metal Complexes , 1991 .

[61]  C. Lefrou,et al.  Absolute determination of electron consumption in transient or steady state electrochemical techniques , 1990 .

[62]  H. Stoll,et al.  Energy-adjustedab initio pseudopotentials for the second and third row transition elements , 1990 .

[63]  S. Larsen,et al.  Synthesis and structure of cis-dichlorobis(2-phenylazopyridine)chromium(II), an inert chromium(II) compound , 1988 .

[64]  H. Buergi,et al.  Triaqua(benzene)ruthenium(II) and triaqua(benzene)osmium(II): synthesis, molecular structure, and water-exchange kinetics , 1988 .

[65]  L. Helm,et al.  High-pressure NMR kinetics. Part 34. Variable-temperature and variable-pressure NMR kinetic study of solvent exchange on hexaaquaruthenium(3+) and -(2+) and hexakis(acetonitrile)ruthenium(2+) , 1988 .

[66]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[67]  J. Schwartz,et al.  Organometallics , 1987, Science.

[68]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[69]  R. A. Krause,et al.  Chemistry of bipyridyl-like ligands. Isomeric complexes of ruthenium(II) with 2-(phenylazo)pyridine , 1980 .

[70]  Hans Klusacek,et al.  Berry pseudorotation and turnstile rotation , 1971 .

[71]  A. Schaap,et al.  Chemiluminescence from cis-diethoxy-1,2-dioxetane. Unexpected effect of oxygen , 1971 .

[72]  J. Osborn,et al.  Rapid intramolecular rearrangements in pentacoordinate transition metal compounds. III. Hydridonitrosyltris(tertiary phosphine) complexes of ruthenium and osmium. Synthesis, stereochemical nonrigidity, and catalytic properties , 1971 .

[73]  Donald H. Kubicek,et al.  Homogeneous catalysts for olefin disproportionations from nitrosyl molybdenum and tungsten compounds , 1970 .

[74]  J. Trosko,et al.  Platinum Compounds: a New Class of Potent Antitumour Agents , 1969, Nature.

[75]  R. Stephen Berry,et al.  Correlation of Rates of Intramolecular Tunneling Processes, with Application to Some Group V Compounds , 1960 .

[76]  D. W. Franco,et al.  Biological activity of ruthenium nitrosyl complexes. , 2012, Nitric oxide : biology and chemistry.

[77]  R. Romeo INORGANIC REACTION MECHANISMS , 2011 .

[78]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[79]  B. Keppler,et al.  The Complexes [OsCl2(azole)2(dmso)2] and [OsCl2(azole)(dmso)3]: Synthesis, Structure, Spectroscopic Properties and Catalytic Hydration of Chloronitriles , 2007 .

[80]  G. M. Gray,et al.  Oligomerization and cis-trans isomerization equilibria in dichloropalladium(II) metallacrown ethers and a dichloropalladium(II) complex of 1,12-bis(diphenylphosphino)dodecane , 2000 .

[81]  T. Meyer,et al.  Mechanism of cis-Directed Four-Electron Oxidation by a trans-Dioxo Complex of Ruthenium(VI) , 1994 .

[82]  B. Keppler Metal complexes in cancer chemotherapy , 1993 .

[83]  A. K. Mukherjee,et al.  Reductive nitrosylation of tetraoxometallates. Part 16. Generation and reactivity of the Os(NO)3+ moiety. Synthesis, characterisation, and electrochemistry of oxalato- and halogeno-nitrosyl derivatives of osmium; crystal and molecular structure of bis(1,10-phenanthrolinium) pentabromonitrosylosmate , 1991 .

[84]  J. Hoeschele,et al.  Studies on the antitumor activity of group VIII transition metal complexes. Part I. Platinum (II) complexes , 1973 .

[85]  Benon H. J. Bielski,et al.  Kinetic Systems: Mathematical Description of Chemical Kinetics in Solution , 1972 .

[86]  H. Fritz,et al.  1H-NMR-messungen an paramagnetischen di-cyclopentadienyl—metall-komplexen☆ , 1967 .

[87]  Brian W. Barrett,et al.  Oak Ridge National Laboratory , Oak Ridge , TN , 2022 .