Optical signal processing on a silicon chip at 640Gb/s using slow-light.

We demonstrate optical performance monitoring of in-band optical signal to noise ratio (OSNR) and residual dispersion, at bit rates of 40Gb/s, 160Gb/s and 640Gb/s, using slow-light enhanced optical third harmonic generation (THG) in a compact (80microm) dispersion engineered 2D silicon photonic crystal waveguide. We show that there is no intrinsic degradation in the enhancement of the signal processing at 640Gb/s relative to that at 40Gb/s, and that this device should operate well above 1Tb/s. This work represents a record 16-fold increase in processing speed for a silicon device, and opens the door for slow light to play a key role in ultra-high bandwidth telecommunications systems.

[1]  Changyuan Yu,et al.  Optical performance monitoring for the next generation optical communication networks , 2010 .

[2]  T. F. Krauss,et al.  Low loss dispersion engineered photonic crystal waveguides for optical delay lines , 2009, 2009 6th IEEE International Conference on Group IV Photonics.

[3]  J.H. Lee,et al.  A Review of the Polarization-Nulling Technique for Monitoring Optical-Signal-to-Noise Ratio in Dynamic WDM Networks , 2006, Journal of Lightwave Technology.

[4]  Jacob Fage-Pedersen,et al.  Photonic crystal waveguides with semi-slow light and tailored dispersion properties. , 2006, Optics express.

[5]  T. Krauss Why do we need slow light , 2008 .

[6]  T.T. Ng,et al.  Cascaded four-wave mixing in fiber optical parametric amplifiers: application to residual dispersion monitoring , 2005, Journal of Lightwave Technology.

[7]  M. Lipson,et al.  Signal regeneration using low-power four-wave mixing on silicon chip , 2008 .

[8]  R. Morandotti,et al.  Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures , 2008 .

[9]  David J. Moss,et al.  Slow Light Enhanced Nonlinear Optics in Silicon Photonic Crystal Waveguides , 2010 .

[10]  J.A. Bolger,et al.  Flexible and Reconfigurable Time-Domain Demultiplexing of Optical Signals at 160 Gb/s , 2009, IEEE Photonics Technology Letters.

[11]  C. Monat,et al.  A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration. , 2009, Optics express.

[12]  Kiyoshi Asakawa,et al.  Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect. , 2009, Optics express.

[13]  Michal Lipson,et al.  Ultra-low power parametric frequency conversion in a silicon microring resonator. , 2008, Optics express.

[14]  Benjamin J Eggleton,et al.  Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. , 2008, Optics letters.

[15]  Sheldon McLaughlin,et al.  Tunable dispersion compensation at 40-Gb/s using a multicavity etalon all-pass filter with NRZ, RZ, and CS-RZ modulation , 2002 .

[16]  Toshihiko Baba,et al.  Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide. , 2009, Optics letters.

[17]  J.C. Li,et al.  Multi Impairment Monitoring for Optical Networks , 2009, Journal of Lightwave Technology.

[18]  Masaya Notomi,et al.  All-optical switches on a silicon chip realized using photonic crystal nanocavities , 2005 .

[19]  H. Hamann,et al.  Active control of slow light on a chip with photonic crystal waveguides , 2005, Nature.

[20]  Bill Corcoran,et al.  Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides. , 2009, Optics express.

[21]  Reza Salem,et al.  Silicon-chip-based ultrafast optical oscilloscope , 2008, Nature.

[22]  A.E. Willner,et al.  Optical performance monitoring , 2004, Journal of Lightwave Technology.

[23]  K. Vahala,et al.  Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. , 2004, Physical review letters.

[24]  Toshihiko Baba,et al.  Low-group-velocity and low-dispersion slow light in photonic crystal waveguides. , 2007, Optics letters.

[25]  M. Fishteyn,et al.  Optical performance monitoring using nonlinear detection , 2004, Journal of Lightwave Technology.

[26]  S. Stulz,et al.  Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating , 2000, IEEE Photonics Technology Letters.

[27]  Toshihiko Baba,et al.  Slow light in photonic crystals , 2008 .

[28]  Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides , 2005, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[29]  Steven G. Johnson,et al.  Photonic-crystal slow-light enhancement of nonlinear phase sensitivity , 2002 .

[30]  Xiaogang Chen,et al.  Self-phase-modulation in submicron silicon-on-insulator photonic wires. , 2006, Optics express.

[31]  Mario Paniccia,et al.  Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides. , 2008, Optics express.

[32]  Hon Ki Tsang,et al.  Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements , 2002 .

[33]  Benjamin J. Eggleton,et al.  In-band OSNR monitoring using fibre optical parametric amplifier , 2005 .

[34]  Sylvain Combrié,et al.  Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide. , 2009, Optics express.

[35]  B.J. Eggleton,et al.  Measurement of residual chromatic dispersion of a 40-Gb/s RZ signal via spectral broadening , 2002, IEEE Photonics Technology Letters.

[36]  B. Eggleton,et al.  Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth , 2009 .

[37]  B. Eggleton,et al.  In-band OSNR and chromatic dispersion monitoring using a fibre optical parametric amplifier. , 2005, Optics express.

[38]  D. Moss,et al.  Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides , 2009 .

[39]  T. Krauss,et al.  Systematic design of flat band slow light in photonic crystal waveguides. , 2008, Optics express.

[40]  D. Moss,et al.  All optical wavelength conversion via cross-phase modulation in chalcogenide glass rib waveguides , 2006, LEOS 2006 - 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[41]  C Martijn de Sterke,et al.  Efficient slow-light coupling in a photonic crystal waveguide without transition region. , 2008, Optics letters.

[42]  K. Vahala,et al.  Ultralow-threshold Raman laser using a spherical dielectric microcavity , 2002, Nature.

[43]  Jing Xu,et al.  Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing. , 2009, Optics express.

[44]  F. Diederich,et al.  All-optical high-speed signal processing with silicon–organic hybrid slot waveguides , 2009 .

[45]  R.-J. Essiambre,et al.  Advanced Modulation Formats for High-Capacity Optical Transport Networks , 2006, Journal of Lightwave Technology.

[46]  Roberto Morandotti,et al.  CMOS-compatible integrated optical hyper-parametric oscillator , 2010 .

[47]  T. Carmon,et al.  Visible continuous emission from a silica microphotonic device by third harmonic generation , 2005, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[48]  Bill Corcoran,et al.  Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics. , 2010, Optics express.

[49]  Thomas F. Krauss Slow light in photonic crystal waveguides , 2007 .