Robust Spectral Compressed Sensing via Structured Matrix Completion

This paper explores the problem of spectral compressed sensing, which aims to recover a spectrally sparse signal from a small random subset of its n time domain samples. The signal of interest is assumed to be a superposition of r multidimensional complex sinusoids, while the underlying frequencies can assume any continuous values in the normalized frequency domain. Conventional compressed sensing paradigms suffer from the basis mismatch issue when imposing a discrete dictionary on the Fourier representation. To address this issue, we develop a novel algorithm, called enhanced matrix completion (EMaC), based on structured matrix completion that does not require prior knowledge of the model order. The algorithm starts by arranging the data into a low-rank enhanced form exhibiting multifold Hankel structure, and then attempts recovery via nuclear norm minimization. Under mild incoherence conditions, EMaC allows perfect recovery as soon as the number of samples exceeds the order of r log4 n, and is stable against bounded noise. Even if a constant portion of samples are corrupted with arbitrary magnitude, EMaC still allows exact recovery, provided that the sample complexity exceeds the order of r2 log3 n. Along the way, our results demonstrate the power of convex relaxation in completing a low-rank multifold Hankel or Toeplitz matrix from minimal observed entries. The performance of our algorithm and its applicability to super resolution are further validated by numerical experiments.

[1]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[2]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[3]  Martin J. Wainwright,et al.  Restricted strong convexity and weighted matrix completion: Optimal bounds with noise , 2010, J. Mach. Learn. Res..

[4]  A. Willsky,et al.  The Convex algebraic geometry of linear inverse problems , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[5]  Emmanuel J. Candès,et al.  A Probabilistic and RIPless Theory of Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[6]  Ali Jalali,et al.  Low-rank matrix recovery from errors and erasures , 2011, ISIT.

[7]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[8]  Justin K. Romberg,et al.  Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals , 2009, IEEE Transactions on Information Theory.

[9]  Thierry Blu,et al.  Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..

[10]  R. Kumaresan,et al.  Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood , 1982, Proceedings of the IEEE.

[11]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[12]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[13]  Pablo A. Parrilo,et al.  Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..

[14]  H. Leonhardt,et al.  A guide to super-resolution fluorescence microscopy , 2010, The Journal of cell biology.

[15]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[16]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[17]  Yonina C. Eldar,et al.  Multichannel Sampling of Pulse Streams at the Rate of Innovation , 2010, IEEE Transactions on Signal Processing.

[18]  Michael Elad,et al.  Calibrationless parallel imaging reconstruction based on structured low‐rank matrix completion , 2013, Magnetic resonance in medicine.

[19]  A. Robert Calderbank,et al.  Compressive demodulation of mutually interfering signals , 2012, 2012 IEEE Statistical Signal Processing Workshop (SSP).

[20]  Gongguo Tang,et al.  Near minimax line spectral estimation , 2013, 2013 47th Annual Conference on Information Sciences and Systems (CISS).

[21]  Ivan Markovsky,et al.  Structured low-rank approximation and its applications , 2008, Autom..

[22]  Stephen P. Boyd,et al.  Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices , 2003, Proceedings of the 2003 American Control Conference, 2003..

[23]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[24]  Constantine Caramanis,et al.  Robust Matrix Completion and Corrupted Columns , 2011, ICML.

[25]  J. Pauly,et al.  Accelerating parameter mapping with a locally low rank constraint , 2015, Magnetic resonance in medicine.

[26]  Tapan K. Sarkar,et al.  Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..

[27]  Yingbo Hua Estimating two-dimensional frequencies by matrix enhancement and matrix pencil , 1992, IEEE Trans. Signal Process..

[28]  Ruslan Salakhutdinov,et al.  Collaborative Filtering in a Non-Uniform World: Learning with the Weighted Trace Norm , 2010, NIPS.

[29]  Yuxin Chen,et al.  Spectral Compressed Sensing via Structured Matrix Completion , 2013, ICML.

[30]  Marco F. Duarte,et al.  Spectral compressive sensing , 2013 .

[31]  Emmanuel J. Cand Towards a Mathematical Theory of Super-Resolution , 2012 .

[32]  Wenjing Liao,et al.  MUSIC for Single-Snapshot Spectral Estimation: Stability and Super-resolution , 2014, ArXiv.

[33]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[34]  J. Cadzow,et al.  Spectral estimation: An overdetermined rational model equation approach , 1982, Proceedings of the IEEE.

[35]  M. Lustig,et al.  Post-Cartesian Calibrationless Parallel Imaging Reconstruction by Structured Low-Rank Matrix Completion , 2009 .

[36]  Wenjing Liao,et al.  Coherence Pattern-Guided Compressive Sensing with Unresolved Grids , 2011, SIAM J. Imaging Sci..

[37]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[38]  Rama Chellappa,et al.  Compressive Acquisition of Dynamic Scenes , 2010, ECCV.

[39]  Akbar M. Sayeed,et al.  Joint multipath-Doppler diversity in mobile wireless communications , 1999, IEEE Trans. Commun..

[40]  D. Donoho,et al.  Atomic Decomposition by Basis Pursuit , 2001 .

[41]  Thierry Blu,et al.  Extrapolation and Interpolation) , 2022 .

[42]  M. Wu,et al.  Collaborative Filtering via Ensembles of Matrix Factorizations , 2007, KDD 2007.

[43]  A. Robert Calderbank,et al.  Sensitivity to Basis Mismatch in Compressed Sensing , 2011, IEEE Trans. Signal Process..

[44]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[45]  Yudong Chen,et al.  Incoherence-Optimal Matrix Completion , 2013, IEEE Transactions on Information Theory.

[46]  Paul Tseng,et al.  Hankel Matrix Rank Minimization with Applications to System Identification and Realization , 2013, SIAM J. Matrix Anal. Appl..

[47]  N. Alon,et al.  The Probabilistic Method: Alon/Probabilistic , 2008 .

[48]  Andrea Montanari,et al.  Matrix completion from a few entries , 2009, 2009 IEEE International Symposium on Information Theory.

[49]  David Gross,et al.  Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.

[50]  Emre Ertin,et al.  Sparsity and Compressed Sensing in Radar Imaging , 2010, Proceedings of the IEEE.

[51]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[52]  Edward J. Wegman,et al.  Statistical Signal Processing , 1985 .

[53]  Emmanuel J. Candès,et al.  Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.

[54]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[55]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[56]  Yingbo Hua,et al.  Estimating two-dimensional frequencies by matrix enhancement and matrix pencil , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[57]  Don H. Johnson,et al.  Statistical Signal Processing , 2009, Encyclopedia of Biometrics.

[58]  Michael Lustig,et al.  Fast pediatric 3D free‐breathing abdominal dynamic contrast enhanced MRI with high spatiotemporal resolution , 2015, Journal of magnetic resonance imaging : JMRI.

[59]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[60]  Yuxin Chen,et al.  Compressive recovery of 2-D off-grid frequencies , 2013, 2013 Asilomar Conference on Signals, Systems and Computers.

[61]  Emmanuel J. Candès,et al.  Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements , 2011, IEEE Transactions on Information Theory.

[62]  W. Marsden I and J , 2012 .

[63]  Dustin G. Mixon,et al.  Full Spark Frames , 2011, 1110.3548.

[64]  Xiaodong Li,et al.  Compressed Sensing and Matrix Completion with Constant Proportion of Corruptions , 2011, Constructive Approximation.

[65]  Emmanuel J. Candès,et al.  Matrix Completion With Noise , 2009, Proceedings of the IEEE.

[66]  Constantine Caramanis,et al.  Robust Matrix Completion with Corrupted Columns , 2011, ArXiv.

[67]  Mehryar Mohri,et al.  Spectral Learning of General Weighted Automata via Constrained Matrix Completion , 2012, NIPS.

[68]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[69]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..