Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits.

We report direct coupling of plasmonic and photonic nanowires using ultracompact near-field interaction. Photon-plasmon coupling efficiency up to 80% with coupling length down to the 200 nm level is achieved between individual Ag and ZnO nanowires. Hybrid nanophotonic components, including polarization splitters, Mach-Zehnder interferometers, and microring cavities, are fabricated out of coupled Ag and ZnO nanowires. These components offer relatively low loss with subwavelength confinement; a hybrid nanowire microcavity exhibits a Q-factor of 520.

[1]  Carbon-assisted synthesis of aligned ZnO nanowires , 2005 .

[2]  Harald Ditlbacher,et al.  Dielectric stripes on gold as surface plasmon waveguides , 2006 .

[3]  J. Seidel,et al.  Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. , 2005, Physical review letters.

[4]  A S Sørensen,et al.  Quantum optics with surface plasmons. , 2005, Physical review letters.

[5]  Matt Law,et al.  Nanoribbon Waveguides for Subwavelength Photonics Integration , 2004, Science.

[6]  Peter Nordlander,et al.  Nanoparticle-mediated coupling of light into a nanowire. , 2007, Nano letters.

[7]  Fang Qian,et al.  Nanowire electronic and optoelectronic devices , 2006 .

[8]  Xue-Wen Chen,et al.  Highly efficient interfacing of guided plasmons and photons in nanowires. , 2009, Nano letters.

[9]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[10]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[11]  F. Xia,et al.  Ultracompact optical buffers on a silicon chip , 2007 .

[12]  Yeshaiahu Fainman,et al.  Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. , 2004, Optics express.

[13]  Wei Zhang,et al.  Hybrid Coupling Between Long-Range Surface Plasmon Polariton Mode and Dielectric Waveguide Mode , 2007, Journal of Lightwave Technology.

[14]  Daming Zhang,et al.  Ultrashort Polarization Splitter Using Two-Mode Interference in Silicon Photonic Wires , 2009 .

[15]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[16]  Stefan A. Maier,et al.  Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing , 2004 .

[17]  Younan Xia,et al.  Observation of plasmon propagation, redirection, and fan-out in silver nanowires. , 2006, Nano letters.

[18]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[19]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[20]  Younan Xia,et al.  Polyol synthesis of silver nanostructures: control of product morphology with Fe(II) or Fe(III) species. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[21]  Antao Chen,et al.  Integration of photonic and silver nanowire plasmonic waveguides. , 2008, Nature nanotechnology.

[22]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[23]  Limin Tong,et al.  Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. , 2004, Optics express.

[24]  A. Hohenau,et al.  Silver nanowires as surface plasmon resonators. , 2005, Physical review letters.

[25]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[26]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[27]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[28]  Nikolay I. Zheludev,et al.  Ultrafast active plasmonics: transmission and control of femtosecond plasmon signals , 2008 .

[29]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.