Weighted Logics for Traces

We study a quantitative model of traces, i.e. trace series which assign to every trace an element from a semiring. We show the coincidence of recognizable trace series with those which are definable by restricted formulas from a weighted logics over traces. We use a translation technique from formulas over words to those over traces, and vice versa. This way, we show also the equivalence of aperiodic and first-order definable trace series.

[1]  Ingmar Meinecke The Hadamard Product of Sequential-Parallel Series , 2005, J. Autom. Lang. Comb..

[2]  Anca Muscholl,et al.  Logical Definability on Infinite Traces , 1996, Theor. Comput. Sci..

[3]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[4]  Arto Salomaa,et al.  Semirings, Automata and Languages , 1985 .

[5]  C. C. Elgot Decision problems of finite automata design and related arithmetics , 1961 .

[6]  Robin Milner An Action Structure for Synchronous pi-Calculus , 1993, FCT.

[7]  Volker Diekert,et al.  The Book of Traces , 1995 .

[8]  U. Hebisch,et al.  Semirings: Algebraic Theory and Applications in Computer Science , 1998 .

[9]  Grzegorz Rozenberg,et al.  Advances in Petri Nets 1985 , 1985, Lecture Notes in Computer Science.

[10]  Wolfgang Reisig,et al.  Petri Nets: Applications and Relationships to Other Models of Concurrency , 1986, Lecture Notes in Computer Science.

[11]  Ina Mäurer Weighted picture automata and weighted logics , 2006 .

[12]  Yves Métivier,et al.  Partial Commutation and Traces , 1997, Handbook of Formal Languages.

[13]  Paul Gastin,et al.  The Kleene-Schützenberger Theorem for Formal Power Series in Partially Commuting Variables , 1999, Inf. Comput..

[14]  Arto Salomaa,et al.  Semirings, Automata, Languages , 1985, EATCS Monographs on Theoretical Computer Science.

[15]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[16]  Antoni W. Mazurkiewicz,et al.  Trace Theory , 1986, Advances in Petri Nets.

[17]  Ingmar Meinecke,et al.  Weighted Branching Automata , 2004 .

[18]  Dietrich Kuske,et al.  Branching Automata with Costs - A Way of Reflecting Parallelism in Costs , 2003, CIAA.

[19]  Arto Salomaa,et al.  Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.

[20]  J. Golan Semirings and their applications , 1999 .

[21]  Marcel Paul Schützenberger,et al.  On the Definition of a Family of Automata , 1961, Inf. Control..

[22]  Benedikt Bollig,et al.  Message-passing automata are expressively equivalent to EMSO logic , 2006, Theor. Comput. Sci..

[23]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[24]  Paul Gastin,et al.  On Aperiodic and Star-Free Formal Power Series in Partially Commuting Variables , 2007, Theory of Computing Systems.

[25]  Benedikt Bollig On the Expressiveness of Asynchronous Cellular Automata , 2005, FCT.

[26]  Manfred Droste,et al.  Weighted tree automata and weighted logics , 2006, Theor. Comput. Sci..

[27]  Dietrich Kuske,et al.  Weighted asynchronous cellular automata , 2006, Theor. Comput. Sci..