Techniques for Linearity and Efficiency Improvement by Biasing Gate and/or Drain as Functions of Envelope Power and Introduction of a Novel FOM for Linearity, Applied on GaN PA's

..................................................................................................................................... i Preface ...................................................................................................................................... iii Acknowledgments..................................................................................................................... v Table of

[1]  P. J. Tasker,et al.  Linearity improvement in RF power amplifier system using integrated Auxiliary Envelope Tracking system , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[2]  Pedro Miguel Lavrador,et al.  The Linearity-Efficiency Compromise , 2010, IEEE Microwave Magazine.

[3]  James Schellenberg,et al.  37 W, 75–100 GHz GaN power amplifier , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[4]  D. Kimball,et al.  Wideband envelope tracking power amplifiers for wireless communications , 2014, 2014 IEEE 14th Topical Meeting on Silicon Monolithic Integrated Circuits in Rf Systems.

[5]  S. C. Cripps,et al.  RF Power Amplifiers for Wireless Communications , 1999 .

[6]  Peter M. Asbeck,et al.  RF and Microwave Power Amplifier and Transmitter Technologies — Part 3 , 2003 .

[7]  Paul J. Tasker,et al.  High power time domain measurement system with active harmonic load-pull for high efficiency base station amplifier design , 2000, IMS 2000.

[8]  Jean-Michel Nebus,et al.  High efficiency class B GaN power amplifier with dynamic gate biasing for improved linearity , 2012 .

[9]  J. F. M. Medina,et al.  Biasing an HBT MMIC transistor for efficiency and output power enhancement , 2012, 2012 Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits.

[10]  Peter M. Asbeck,et al.  RF and Microwave Power Amplifier and Transmitter Technologies — Part 4 , 2003 .

[11]  A. Zhu,et al.  Dynamic Deviation Reduction-Based Volterra Behavioral Modeling of RF Power Amplifiers , 2006, IEEE Transactions on Microwave Theory and Techniques.

[12]  C. Weitzel,et al.  RF power amplifiers for wireless communications , 2002, 24th Annual Technical Digest Gallium Arsenide Integrated Circuit (GaAs IC) Symposiu.

[13]  Jaehyeong Kim,et al.  A Generalized Memory Polynomial Model for Digital Predistortion of RF Power Amplifiers , 2006, IEEE Transactions on Signal Processing.

[14]  Timo Rahkonen,et al.  Distortion in RF power amplifiers , 2003 .

[15]  M. Olavsbråten,et al.  Novel Metric Describing Total Nonlinearity of Power Amplifier With a Corresponding Figure of Merit for Linearity Evaluation and Optimization , 2017, IEEE Microwave and Wireless Components Letters.

[17]  Allen Katz,et al.  The Evolution of PA Linearization: From Classic Feedforward and Feedback Through Analog and Digital Predistortion , 2016, IEEE Microwave Magazine.

[18]  J. Komiak GaN HEMT: Dominant Force in High-Frequency Solid-State Power Amplifiers , 2015, IEEE Microwave Magazine.

[19]  Steve C. Cripps,et al.  Advanced Techniques in RF Power Amplifier Design , 2002 .

[21]  R. S. Pengelly,et al.  A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs , 2012, IEEE Transactions on Microwave Theory and Techniques.

[22]  Juan Felipe Miranda Medina Dynamic biasing for linear power amplifier efficiency enhancement , 2012 .

[23]  P. Draxler,et al.  Wideband Envelope Tracking Power Amplifiers With Reduced Bandwidth Power Supply Waveforms and Adaptive Digital Predistortion Techniques , 2009, IEEE Transactions on Microwave Theory and Techniques.

[24]  Peter M. Asbeck,et al.  Wideband envelope tracking power amplifier with reduced bandwidth power supply waveform , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[25]  M. Olavsbraten,et al.  Optimization theory applied to dynamic biasing for power amplifier performance enhancement , 2012, 2012 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications.

[27]  P.M. Asbeck,et al.  Nonlinearity consideration of GaN based envelope tracking power amplifiers , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[28]  Peter M. Asbeck,et al.  Dynamic Gate Bias Technique for Improved Linearity of GaN HFET Power Amplifiers , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[29]  P.J. Tasker Practical waveform engineering , 2009, IEEE Microwave Magazine.

[30]  H. Chireix High Power Outphasing Modulation , 1935, Proceedings of the Institute of Radio Engineers.

[31]  Jungsang Kim,et al.  Digital predistortion of wideband signals based on power amplifier model with memory , 2001 .

[32]  W.H. Doherty,et al.  A New High Efficiency Power Amplifier for Modulated Waves , 1936, Proceedings of the Institute of Radio Engineers.

[33]  Taylor Barton,et al.  Not Just a Phase: Outphasing Power Amplifiers , 2016, IEEE Microwave Magazine.

[34]  Bumman Kim,et al.  Push the Envelope: Design Concepts for Envelope-Tracking Power Amplifiers , 2013, IEEE Microwave Magazine.

[35]  J. Krupka,et al.  Highly resistive GaN substrates for high frequency electronics , 2013, 2013 European Microwave Conference.

[36]  P. M. Asbeck,et al.  A Wideband CMOS/GaAs HBT Envelope Tracking Power Amplifier for 4G LTE Mobile Terminal Applications , 2012, IEEE Transactions on Microwave Theory and Techniques.

[37]  Ramakrishna Vetury,et al.  History of GaN: High-Power RF Gallium Nitride (GaN) from Infancy to Manufacturable Process and Beyond , 2013, IEEE Microwave Magazine.

[38]  W. Kuang,et al.  Microwave AlGaN/GaN HFETs , 2005, IEEE Microwave Magazine.