Synthetic nanocomposite MgH2/5 wt. % TiMn2 powders for solid-hydrogen storage tank integrated with PEM fuel cell

[1]  A. Jain,et al.  Enhancement of hydrogen desorption kinetics in magnesium hydride by doping with lithium metatitanate , 2017 .

[2]  M. El-Eskandarany,et al.  Structure, morphology and hydrogen storage kinetics of nanocomposite MgH2/10 wt% ZrNi5 powders , 2017 .

[3]  Sanjay Kumar,et al.  Thermodynamics and kinetics of MgH2–nfTa2O5 composite for reversible hydrogen storage application , 2017, Journal of Materials Science.

[4]  Min Zhu,et al.  Application of dielectric barrier discharge plasma-assisted milling in energy storage materials – A review , 2017 .

[5]  Min Zhu,et al.  Phase transition and hydrogen storage properties of Mg17Ba2 compound , 2017 .

[6]  R. Lyon HYDROGEN STORAGE SYSTEM , 2017 .

[7]  Kondo‐François Aguey‐Zinsou,et al.  Electrodeposited Magnesium Nanoparticles Linking Particle Size to Activation Energy , 2016 .

[8]  M. El-Eskandarany,et al.  In-situ catalyzation approach for enhancing the hydrogenation/dehydrogenation kinetics of MgH2 powders with Ni particles , 2016, Scientific Reports.

[9]  A. Montone,et al.  Improving magnesium based systems for efficient hydrogen storage tanks , 2016 .

[10]  M. Dahari,et al.  A review on the current progress of metal hydrides material for solid-state hydrogen storage applications , 2016 .

[11]  G. Walker,et al.  Efficient hydrogen storage in up-scale metal hydride tanks as possible metal hydride compression agents equipped with aluminium extended surfaces , 2016 .

[12]  A. Alsairafi,et al.  Synergistic dosing effect of TiC/FeCr nanocatalysts on the hydrogenation/dehydrogenation kinetics of nanocrystalline MgH2 powders , 2016 .

[13]  M. El-Eskandarany Metallic glassy Zr70Ni20Pd10 powders for improving the hydrogenation/dehydrogenation behavior of MgH2 , 2016, Scientific Reports.

[14]  W. Liu,et al.  Review of hydrogen storage in AB3 alloys targeting stationary fuel cell applications , 2016 .

[15]  Torben R. Jensen,et al.  Review of magnesium hydride-based materials: development and optimisation , 2016 .

[16]  M. El-Eskandarany,et al.  Superior catalytic effect of nanocrystalline big-cube Zr2Ni metastable phase for improving the hydrogen sorption/desorption kinetics and cyclability of MgH2 powders , 2015 .

[17]  David J. Smith,et al.  Formation of metastable phases in magnesium–titanium system by high-pressure torsion and their hydrogen storage performance , 2015 .

[18]  Z. Fang,et al.  Stability of Catalyzed Magnesium Hydride Nanocrystalline During Hydrogen Cycling. Part I: Kinetic Analysis , 2015 .

[19]  M. El-Eskandarany,et al.  Effect of mechanically-induced solid-state doping time on the morphology and hydrogenation cyclability of MgH2/7 Mn3.6Ti2.4 nanocomposite powders , 2015 .

[20]  J. Polte Fundamental growth principles of colloidal metal nanoparticles – a new perspective , 2015 .

[21]  Min Zhu,et al.  Dual-tuning effects of In, Al, and Ti on the thermodynamics and kinetics of Mg85In5Al5Ti5 alloy synthesized by plasma milling , 2015 .

[22]  M. El-Eskandarany,et al.  Integrated Ni/Nb2O5 nanocatalytic agent dose for improving the hydrogenation/dehydrogenation kinetics of reacted ball milled MgH2 powders , 2014 .

[23]  M. El-Eskandarany,et al.  Nanocrystalline β-γ-β cyclic phase transformation in reacted ball milled MgH2 powders , 2014 .

[24]  Yang Ren,et al.  Thermodynamic Destabilization of Magnesium Hydride Using Mg-Based Solid Solution Alloys , 2014 .

[25]  Jiangwen Liu,et al.  Enhanced Hydrogen Storage Kinetics and Stability by Synergistic Effects of in Situ Formed CeH2.73 and Ni in CeH2.73-MgH2‑Ni Nanocomposites , 2014 .

[26]  D. Baraldi,et al.  Hydrogen tank first filling experiments at the JRC-IET GasTeF facility , 2014 .

[27]  Jiangwen Liu,et al.  Enhanced dehydriding thermodynamics and kinetics in Mg(In)–MgF2 composite directly synthesized by plasma milling , 2014 .

[28]  Jiangwen Liu,et al.  Dual-tuning effect of In on the thermodynamic and kinetic properties of Mg2Ni dehydrogenation , 2013 .

[29]  K. Gurunathan,et al.  Effects of nano size mischmetal and its oxide on improving the hydrogen sorption behaviour of MgH2 , 2013 .

[30]  Z. Fang,et al.  Effect of Ti Intermetallic Catalysts on Hydrogen Storage Properties of Magnesium Hydride , 2013 .

[31]  Min Zhu,et al.  Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts , 2013 .

[32]  Adriaan Beukers,et al.  A novel design solution for improving the performance of composite toroidal hydrogen storage tanks , 2012 .

[33]  B. S. Amirkhiz,et al.  Microstructural evolution during hydrogen sorption cycling of Mg―FeTi nanolayered composites , 2011 .

[34]  S. Chan,et al.  Hydrogen storage for off-grid power supply , 2011 .

[35]  Paul M. Forester Hydrogen: Fuel of the 21st Century? , 2010 .

[36]  F. Agresti,et al.  The problem of solid state hydrogen storage , 2009 .

[37]  A. Simchi,et al.  Synergetic effect of Ni and Nb2O5 on dehydrogenation properties of nanostructured MgH2 synthesized by high-energy mechanical alloying , 2009 .

[38]  L. Ouyang,et al.  Synergism of mechanical milling and dielectric barrier discharge plasma on the fabrication of nano-powders of pure metals and tungsten carbide , 2009 .

[39]  D. Wexler,et al.  Hydrogen storage properties of MgH2-SiC composites , 2009 .

[40]  Xuebin Yu,et al.  Improved Hydrogen Storage in Magnesium Hydride Catalyzed by Nanosized Ti0.4Cr0.15Mn0.15V0.3 Alloy , 2009 .

[41]  Robert A. Varin,et al.  Nanomaterials for Solid State Hydrogen Storage , 2008 .

[42]  A. Petford-Long,et al.  TEM studies of Nb2O5 catalyst in ball-milled MgH2 for hydrogen storage , 2008 .

[43]  Zhonghua Zhu,et al.  Hydrogen diffusion and effect of grain size on hydrogenation kinetics in magnesium hydrides , 2008 .

[44]  M. Jefferson Sustainable energy development: performance and prospects , 2006 .

[45]  T. Veziroglu,et al.  The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet , 2005 .

[46]  Takayuki Ichikawa,et al.  Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling. , 2005, The journal of physical chemistry. B.

[47]  J. Fanchi HYDROGEN – AN ENERGY CARRIER , 2005 .

[48]  J. Zou,et al.  Microstructure of MmM5/Mg multi‐layer hydrogen storage films prepared by magnetron sputtering , 2004, Microscopy research and technique.

[49]  Andrew Spiers,et al.  Performance and prospects , 2004 .

[50]  Zhengxiao Guo,et al.  Mechanical alloying and electronic simulations of (MgH2+M) systems (M=Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage , 2004 .

[51]  Zushu Hu,et al.  Preparation and hydriding/dehydriding properties of mechanically milled Mg–30 wt% TiMn1.5 composite , 2003 .

[52]  James Larminie,et al.  Fuel Cell Systems Explained: Larminie/Fuel Cell Systems Explained , 2003 .

[53]  S. A. Sherif,et al.  Principles of hydrogen energy production, storage and utilization , 2003 .

[54]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[55]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[56]  Robert Schulz,et al.  Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems , 1999 .

[57]  K. Suzuki,et al.  Reactive Ball Mill for Solid State Synthesis of Metal Nitrides Powders , 1992 .

[58]  A. Całka Formation of titanium and zirconium nitrides by mechanical alloying , 1991 .

[59]  G Blomqvist,et al.  Kinetic analysis. , 1991, Wiener klinische Wochenschrift.

[60]  Shoichi Matsuda,et al.  Absorption of Gases by Metals , 1949 .

[61]  S. Arrhenius Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte , 1889 .