On the maximum orders of elements of finite almost simple groups and primitive permutation groups

We determine upper bounds for the maximum order of an element of a finite almost simple group with socle T in terms of the minimum index m(T) of a maximal subgroup of T: for T not an alternating group we prove that, with finitely many excep- tions, the maximum element order is at most m(T). Moreover, apart from an explicit list of groups, the bound can be reduced to m(T)/4. These results are applied to determine all primitive permutation groups on a set of size n that contain permutations of order greater than or equal to n/4. We note again that this result gives upper bounds for meo(Aut(T)) in terms of m(T), and for meo(G) in terms of m(G) (since m(T) ≤ m(G)). Moreover equality in the up- per bound meo(Aut(T)) ≤ m(T) holds when T = PSLd(q) for all but two pairs (d,q), see Table 3 and Theorem 2.16. (Theorem 2.16 and Table 3 provide good estimates for

[1]  Bruce N. Cooperstein,et al.  Minimal degree for a permutation representation of a classical group , 1978 .

[2]  Robert A. Wilson,et al.  The finite simple groups , 2009 .

[3]  G. Michler,et al.  Character table and blocks of finite simple triality groups , 1987 .

[4]  C. Praeger,et al.  Finite primitive permutation groups containing a permutation having at most four cycles , 2013, 1307.6881.

[5]  D. Gorenstein,et al.  The Classification of the Finite Simple Groups , 1983 .

[6]  Ross Lawther,et al.  Correction to 'Jordan block sizes of unipotent elements in exceptional algebraic groups' , 1998, Communications in Algebra.

[7]  A. V. Vasilyev,et al.  Minimal permutation representations of finite simple exceptional groups of typesG2 andF4 , 1996 .

[8]  P. Erdos,et al.  On some problems of a statistical group-theory. III , 1967 .

[9]  M. Liebeck,et al.  Primitive Permutation Groups Containing an Element of Large Prime Order , 1985 .

[10]  Gary M. Seitz,et al.  SUBGROUPS OF MAXIMAL RANK IN FINITE EXCEPTIONAL GROUPS OF LIE TYPE , 1992 .

[11]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[12]  D. M. Bloom,et al.  THE SUBGROUPS OF PSL(3, q) FOR ODD qC) , 2010 .

[13]  Cheryl E. Praeger,et al.  The maximal factorizations of the finite simple groups and their automorphism groups , 1990 .

[14]  Cheryl E. Praeger,et al.  On the O'Nan-Scott theorem for finite primitive permutation groups , 1988, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[15]  J. Dixon,et al.  Permutation Groups , 1996 .

[16]  Cheryl E Praeger Surveys in Combinatorics, 1997: Finite Quasiprimitive Graphs , 1997 .

[17]  M. Liebeck On the Orders of Maximal Subgroups of the Finite Classical Groups , 1985 .

[18]  P. Müller Permutation Groups with a Cyclic Two-Orbits Subgroup and Monodromy Groups of Laurent Polynomials , 2011 .

[19]  James Wiegold GROUP THEORY II (Grundlehren der mathematischen Wissenschaften 248) , 1987 .

[20]  Jean-Louis Nicolas,et al.  Effective bounds for the maximal order of an element in the symmetric group , 1989 .

[21]  Cheryl E. Praeger,et al.  Permutations with Restricted Cycle Structure and an Algorithmic Application , 2002, Combinatorics, Probability and Computing.

[22]  H. Robbins A Remark on Stirling’s Formula , 1955 .

[23]  Jason Fulman,et al.  Conjugacy class properties of the extension of GL(n,q) generated by the inverse transpose involution , 2003 .

[24]  A Probabilistic Approach to Conjugacy Classes in the Finite Symplectic and Orthogonal Groups , 2000, math/0003010.

[25]  A. A. Buturlakin,et al.  The cyclic structure of maximal tori of the finite classical groups , 2007 .

[26]  D. Gorenstein,et al.  The Classification of the Finite Simple Groups, Number 2 , 1995 .

[27]  David M. Bloom,et al.  The subgroups of ${\rm PSL}(3,\,q)$ for odd $q$ , 1967 .

[28]  Michael Aschbacher,et al.  Corrections to “Involutions in Chevalley groups over fields of even order” , 1976, Nagoya Mathematical Journal.

[29]  William M. Kantor,et al.  Prime Power Graphs for Groups of Lie Type , 2002 .

[30]  Simon Tavaré,et al.  A Rate for the Erdös-Turán Law , 1994, Comb. Probab. Comput..

[31]  R. Gow,et al.  Extending real-valued characters of finite general linear and unitary groups on elements related to regular unipotents , 2007, 0704.2022.

[32]  P. Erdös,et al.  On some problems of a statistical group-theory. I , 1965 .

[33]  M Suzuki,et al.  A NEW TYPE OF SIMPLE GROUPS OF FINITE ORDER. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Martin W. Liebeck,et al.  The Subgroup Structure of the Finite Classical Groups , 1990 .

[35]  William M. Kantor,et al.  Large element orders and the characteristic of Lie-type simple groups ✩ , 2009 .

[36]  C. Praeger,et al.  Triple factorisations of the general linear group and their associated geometries , 2014, 1405.5276.

[37]  N. Iwahori,et al.  The conjugacy classes of Chevalley groups of type $(F_4)$ over finite fields of characteristic $p\ne 2$ , 1974 .

[38]  Bertram Huppert,et al.  Singer-Zyklen in klassischen Gruppen , 1970 .

[39]  A. V. Vasilyev,et al.  Minimal permutation representations of finite simple exceptional twisted groups , 1998 .

[40]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .

[41]  C. Praeger,et al.  Affine transformations of finite vector spaces with large orders or few cycles , 2013, 1306.1368.

[42]  Joy Morris,et al.  Generalised quadrangles with a group of automorphisms acting primitively on points and lines , 2012, J. Comb. Theory, Ser. A.

[43]  Cheryl E. Praeger,et al.  On the orders of Primitive Permutation Groups , 1980 .

[44]  R. James Milgram,et al.  Finite Groups of Lie Type , 1994 .

[45]  E. Landau Handbuch der Lehre von der Verteilung der Primzahlen , 1974 .

[46]  Michio Suzuki Group Theory I , 1981 .

[47]  V. D. Mazurov,et al.  Minimal permutation representations of finite simple orthogonal groups , 1995 .