Keynote topic: Network cloudification: SDN-NFV and 5G-MEC with edge and fog computing

The second wave of cloud computing, named network cloudification, in the forms of SDN (Software Defined Networking), NFV (Network Function Virtualization), and 5G-MEC (Mobile Edge Computing), is to centralize and virtualize networking into data centers. It enables operators to offer NaaS (Networking as a Service) with much lower CAPEX and OPEX with larger flexibility because devices become simpler, the number of administrators is less, and service orchestration is easier. It turns parts of communications currently done in hardware into computing done in software. However, the host of these data centers would not be Google-like super data centers as they are too far away from subscribers. The latency requirement of 10ms and 1ms decentralizes cloud computing down to edge and fog computing with CORD (central offices re-architected as data centers) and cellular base stations for SDN-NFV and 5G-MEC, respectively. In this talk, we first argue why, where and when SDN, NFV, 5G-MEC would prevail, and then illustrate how to make it happen with OpenFlow, SC (Service Chaining), NSH (Network Service header), etc. Then we examine how latency requirement dominates this virtualization game by listing key questions to answer in resource allocation in the architectures of SDN, NFV, and 5G-MEC. Their answers are mostly unknown now but would benefit the architects and developers of OpenFlow switches, SDN controllers, SDN-NFV apps, NFV data centers, MEC-enabled base stations, and operator's infrastructure in general.