Online resources for microRNA analysis

The use of online tools for bioinformatics analyses is becoming increasingly widespread. Resources specific to the field of microRNAs are available, varying in scope and usability. Online tools are the most useful for casual as well as power users since they need no installation, are hardware independent and are used mostly through graphic user interfaces and links to external sources. Here, we present an overview of useful online resources that have to do with microRNA genomics, gene finding, target prediction and functional analysis.

[1]  Nectarios Koziris,et al.  Accurate microRNA target prediction correlates with protein repression levels , 2009, BMC Bioinformatics.

[2]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[3]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[4]  Anton J. Enright,et al.  SylArray: a web server for automated detection of miRNA effects from expression data , 2010, Bioinform..

[5]  Martin Reczko,et al.  The database of experimentally supported targets: a functional update of TarBase , 2008, Nucleic Acids Res..

[6]  W. Filipowicz,et al.  Post-transcriptional gene silencing by siRNAs and miRNAs. , 2005, Current opinion in structural biology.

[7]  Ola R. Snøve,et al.  Reliable prediction of Drosha processing sites improves microRNA gene prediction. , 2007, Bioinformatics.

[8]  Martin Reczko,et al.  DIANA-mirPath: Integrating human and mouse microRNAs in pathways , 2009, Bioinform..

[9]  Debmalya Barh,et al.  miReg: a resource for microRNA regulation , 2010, J. Integr. Bioinform..

[10]  Martin Reczko,et al.  MicroRNAs and Cancer—The Search Begins! , 2009, IEEE Transactions on Information Technology in Biomedicine.

[11]  Pascal Barbry,et al.  Bioinformatics Applications Note Gene Expression Mirontop: Mining Micrornas Targets across Large Scale Gene Expression Studies , 2022 .

[12]  Martin Reczko,et al.  Lost in translation: an assessment and perspective for computational microRNA target identification , 2009, Bioinform..

[13]  Sam Griffiths-Jones,et al.  miRBase: the microRNA sequence database. , 2006, Methods in molecular biology.

[14]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[15]  Yadong Wang,et al.  miR2Disease: a manually curated database for microRNA deregulation in human disease , 2008, Nucleic Acids Res..

[16]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[17]  Tongbin Li,et al.  miRecords: an integrated resource for microRNA–target interactions , 2008, Nucleic Acids Res..

[18]  Byoung-Tak Zhang,et al.  ProMiR II: a web server for the probabilistic prediction of clustered, nonclustered, conserved and nonconserved microRNAs , 2006, Nucleic Acids Res..

[19]  Colin N. Dewey,et al.  A Genome-Wide Map of Conserved MicroRNA Targets in C. elegans , 2006, Current Biology.

[20]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[21]  Timos K. Sellis,et al.  miRGen 2.0: a database of microRNA genomic information and regulation , 2009, Nucleic Acids Res..

[22]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[23]  Anjali J. Koppal,et al.  Supplementary data: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites , 2010 .

[24]  A. Hatzigeorgiou,et al.  The DIANA-mirExTra Web Server: From Gene Expression Data to MicroRNA Function , 2010, PloS one.