Regularising Inverse Problems with Generative Machine Learning Models

Deep neural network approaches to inverse imaging problems have produced impressive results in the last few years. In this paper, we consider the use of generative models in a variational regularisation approach to inverse problems. The considered regularisers penalise images that are far from the range of a generative model that has learned to produce images similar to a training dataset. We name this family generative regularisers. The success of generative regularisers depends on the quality of the generative model and so we propose a set of desired criteria to assess models and guide future research. In our numerical experiments, we evaluate three common generative models, autoencoders, variational autoencoders and generative adversarial networks, against our desired criteria. We also test three different generative regularisers on the inverse problems of deblurring, deconvolution, and tomography. We show that the success of solutions restricted to lie exactly in the range of the generator is highly dependent on the ability of the generative model but that allowing small deviations from the range of the generator produces more consistent results.

[1]  Bangti Jin,et al.  Inverse Problems , 2014, Series on Applied Mathematics.

[2]  Carola-Bibiane Schönlieb,et al.  Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein Distance) , 2021, ArXiv.

[3]  Thomas Pock,et al.  Inverse GANs for accelerated MRI reconstruction , 2019, Optical Engineering + Applications.

[4]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[5]  Rushil Anirudh,et al.  An Unsupervised Approach to Solving Inverse Problems using Generative Adversarial Networks , 2018, ArXiv.

[6]  Kanchana Vaishnavi Gandikota,et al.  Generative Models for Generic Light Field Reconstruction , 2020, ArXiv.

[7]  Bruce R. Rosen,et al.  Image reconstruction by domain-transform manifold learning , 2017, Nature.

[8]  Mathukumalli Vidyasagar,et al.  An Introduction to Compressed Sensing , 2019 .

[9]  Muhammad Asim,et al.  Blind Image Deconvolution using Pretrained Generative Priors , 2019, BMVC.

[10]  Truong Q. Nguyen,et al.  Correction by Projection: Denoising Images with Generative Adversarial Networks , 2018, ArXiv.

[11]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[12]  Maïtine Bergounioux,et al.  Mathematical Image Processing , 2011 .

[13]  Carola-Bibiane Schönlieb,et al.  Task adapted reconstruction for inverse problems , 2018, Inverse Problems.

[14]  Otmar Scherzer,et al.  Variational Regularization Methods for the Solution of Inverse Problems , 2009 .

[15]  C. Brune,et al.  Learned SVD: solving inverse problems via hybrid autoencoding , 2019, ArXiv.

[16]  Stephan Antholzer,et al.  Deep null space learning for inverse problems: convergence analysis and rates , 2018, Inverse Problems.

[17]  Yang Wang,et al.  A Mathematical Introduction to Generative Adversarial Nets (GAN) , 2020, ArXiv.

[18]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[19]  Tobias Kluth,et al.  Regularization by Architecture: A Deep Prior Approach for Inverse Problems , 2019, Journal of Mathematical Imaging and Vision.

[20]  Jonas Adler,et al.  Learned Primal-Dual Reconstruction , 2017, IEEE Transactions on Medical Imaging.

[21]  Marc Teboulle,et al.  Proximal alternating linearized minimization for nonconvex and nonsmooth problems , 2013, Mathematical Programming.

[22]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[23]  Chinmay Hegde,et al.  Algorithmic Aspects of Inverse Problems Using Generative Models , 2018, 2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[24]  Prafulla Dhariwal,et al.  Glow: Generative Flow with Invertible 1x1 Convolutions , 2018, NeurIPS.

[25]  Léon Bottou,et al.  Wasserstein Generative Adversarial Networks , 2017, ICML.

[26]  Martin Holler,et al.  A Generative Variational Model for Inverse Problems in Imaging , 2021, SIAM J. Math. Data Sci..

[27]  Jong Chul Ye,et al.  Optimal Transport Structure of CycleGAN for Unsupervised Learning for Inverse Problems , 2020, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[28]  Marco Cuturi,et al.  GAN and VAE from an Optimal Transport Point of View , 2017, 1706.01807.

[29]  Alexandros G. Dimakis,et al.  Compressed Sensing using Generative Models , 2017, ICML.

[30]  Vladislav Voroninski,et al.  Global Guarantees for Enforcing Deep Generative Priors by Empirical Risk , 2017, IEEE Transactions on Information Theory.

[31]  Linh V. Nguyen,et al.  Augmented NETT regularization of inverse problems , 2021, Journal of Physics Communications.

[32]  Simon R. Arridge,et al.  Solving inverse problems using data-driven models , 2019, Acta Numerica.

[33]  Harshad Rai,et al.  Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks , 2018 .

[34]  Carola-Bibiane Schönlieb,et al.  Adversarial Regularizers in Inverse Problems , 2018, NeurIPS.

[35]  Thomas Oberlin,et al.  Regularization via Deep Generative Models: an Analysis Point of View , 2021, 2021 IEEE International Conference on Image Processing (ICIP).

[36]  Jonas Adler,et al.  Deep Bayesian Inversion , 2018, ArXiv.

[37]  Michael Elad,et al.  The Little Engine That Could: Regularization by Denoising (RED) , 2016, SIAM J. Imaging Sci..

[38]  David Lopez-Paz,et al.  Revisiting Classifier Two-Sample Tests , 2016, ICLR.

[39]  Jong Chul Ye,et al.  Unpaired Deep Learning for Accelerated MRI Using Optimal Transport Driven CycleGAN , 2020, IEEE Transactions on Computational Imaging.

[40]  Bernhard Schölkopf,et al.  A Kernel Method for the Two-Sample-Problem , 2006, NIPS.

[41]  Leonidas J. Guibas,et al.  A metric for distributions with applications to image databases , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[42]  Kaushik Mitra,et al.  Solving Inverse Computational Imaging Problems Using Deep Pixel-Level Prior , 2018, IEEE Transactions on Computational Imaging.

[43]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[44]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[45]  Arnold W. M. Smeulders,et al.  i-RevNet: Deep Invertible Networks , 2018, ICLR.

[46]  Eldad Haber,et al.  An introduction to deep generative modeling , 2021, GAMM-Mitteilungen.

[47]  C. Villani Optimal Transport: Old and New , 2008 .

[48]  Shirin Jalali,et al.  Auto-encoders for compressed sensing , 2019 .

[49]  Jaakko Lehtinen,et al.  Progressive Growing of GANs for Improved Quality, Stability, and Variation , 2017, ICLR.

[50]  Johannes Schwab,et al.  Sparse synthesis regularization with deep neural networks , 2019, 2019 13th International conference on Sampling Theory and Applications (SampTA).

[51]  Ali Borji,et al.  Pros and Cons of GAN Evaluation Measures , 2018, Comput. Vis. Image Underst..

[52]  Yi Zhang,et al.  Do GANs learn the distribution? Some Theory and Empirics , 2018, ICLR.

[53]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[54]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[55]  Sihan Zeng,et al.  Fast Compressive Sensing Recovery Using Generative Models with Structured Latent Variables , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[56]  拓海 杉山,et al.  “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”の学習報告 , 2017 .

[57]  Martin Burger,et al.  Modern regularization methods for inverse problems , 2018, Acta Numerica.

[58]  Michael Rabbat,et al.  fastMRI: A Publicly Available Raw k-Space and DICOM Dataset of Knee Images for Accelerated MR Image Reconstruction Using Machine Learning. , 2020, Radiology. Artificial intelligence.

[59]  Pascal Vincent,et al.  fastMRI: An Open Dataset and Benchmarks for Accelerated MRI , 2018, ArXiv.

[60]  J. K. Hunter,et al.  Measure Theory , 2007 .

[61]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[62]  Johannes Schwab,et al.  Sparse Anett For Solving Inverse Problems With Deep Learning , 2020, 2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops).

[63]  Brendan J. Frey,et al.  k-Sparse Autoencoders , 2013, ICLR.

[64]  Matthias Bethge,et al.  A note on the evaluation of generative models , 2015, ICLR.

[65]  Sebastian Nowozin,et al.  f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization , 2016, NIPS.

[66]  Johannes Schwab,et al.  Deep synthesis regularization of inverse problems , 2020, ArXiv.

[67]  Andriy Mnih,et al.  Resampled Priors for Variational Autoencoders , 2018, AISTATS.

[68]  A. Tikhonov,et al.  Numerical Methods for the Solution of Ill-Posed Problems , 1995 .

[69]  Cynthia Rudin,et al.  PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[70]  Sepp Hochreiter,et al.  GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium , 2017, NIPS.

[71]  Tom White,et al.  Sampling Generative Networks: Notes on a Few Effective Techniques , 2016, ArXiv.

[72]  Minh N. Do,et al.  Semantic Image Inpainting with Deep Generative Models , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[73]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[74]  Brendt Wohlberg,et al.  Plug-and-Play priors for model based reconstruction , 2013, 2013 IEEE Global Conference on Signal and Information Processing.

[75]  Vladislav Voroninski,et al.  Phase Retrieval Under a Generative Prior , 2018, NeurIPS.

[76]  L. Shepp Probability Essentials , 2002 .

[77]  Johannes Schwab,et al.  Sparse $\ell^q$-regularization of Inverse Problems Using Deep Learning , 2019 .

[78]  Chinmay Hegde,et al.  Solving Linear Inverse Problems Using Gan Priors: An Algorithm with Provable Guarantees , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[79]  Rama Chellappa,et al.  Task-Aware Compressed Sensing with Generative Adversarial Networks , 2018, AAAI.

[80]  Guang Yang,et al.  Which GAN? A comparative study of generative adversarial network-based fast MRI reconstruction , 2021, Philosophical Transactions of the Royal Society A.

[81]  Stephan Antholzer,et al.  NETT: solving inverse problems with deep neural networks , 2018, Inverse Problems.

[82]  Michael Unser,et al.  Deep Convolutional Neural Network for Inverse Problems in Imaging , 2016, IEEE Transactions on Image Processing.

[83]  Stefano Ermon,et al.  Modeling Sparse Deviations for Compressed Sensing using Generative Models , 2018, ICML.

[84]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[85]  Mauricio Delbracio,et al.  Solving Inverse Problems by Joint Posterior Maximization with a VAE Prior , 2019, ArXiv.

[86]  Martin J. Blunt,et al.  Stochastic Seismic Waveform Inversion Using Generative Adversarial Networks as a Geological Prior , 2018, Mathematical Geosciences.

[87]  Matti Lassas,et al.  Learning the optimal regularizer for inverse problems , 2021, ArXiv.

[88]  Ran He,et al.  Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[89]  David P. Wipf,et al.  Diagnosing and Enhancing VAE Models , 2019, ICLR.

[90]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[91]  Guang Yang,et al.  DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction , 2018, IEEE Transactions on Medical Imaging.

[92]  Jin Keun Seo,et al.  Unpaired Image Denoising Using a Generative Adversarial Network in X-Ray CT , 2019, IEEE Access.

[93]  Andrea Vedaldi,et al.  Deep Image Prior , 2017, International Journal of Computer Vision.

[94]  Aaron C. Courville,et al.  Improved Training of Wasserstein GANs , 2017, NIPS.

[95]  Pieter Abbeel,et al.  InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets , 2016, NIPS.

[96]  C. Vogel,et al.  Analysis of bounded variation penalty methods for ill-posed problems , 1994 .

[97]  Michael Möller,et al.  Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[98]  Alexandros G. Dimakis,et al.  Compressed Sensing with Deep Image Prior and Learned Regularization , 2018, ArXiv.

[99]  Prabir Kumar Biswas,et al.  Faster Unsupervised Semantic Inpainting: A GAN Based Approach , 2019, 2019 IEEE International Conference on Image Processing (ICIP).

[100]  Michael I. Jordan,et al.  Variational Bayesian Inference with Stochastic Search , 2012, ICML.

[101]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..