New globally distributed bacterial phyla within the FCB superphylum

[1]  Qichao Tu,et al.  Contrasting archaeal and bacterial community assembly processes and the importance of rare taxa along a depth gradient in shallow coastal sediments. , 2022, The Science of the total environment.

[2]  Tom O. Delmont,et al.  Biosynthetic potential of the global ocean microbiome , 2022, Nature.

[3]  Luis Pedro Coelho,et al.  Functional and evolutionary significance of unknown genes from uncultivated taxa , 2022, bioRxiv.

[4]  M. Könneke,et al.  Oxygen and nitrogen production by an ammonia-oxidizing archaeon , 2022, Science.

[5]  Donovan H. Parks,et al.  GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy , 2021, Nucleic Acids Res..

[6]  Luis Pedro Coelho,et al.  Towards the biogeography of prokaryotic genes , 2021, Nature.

[7]  B. Baker,et al.  Large-scale protein level comparison of Deltaproteobacteria reveals cohesive metabolic groups , 2021, The ISME Journal.

[8]  Min Liu,et al.  Human activities can drive sulfate-reducing bacteria community in Chinese intertidal sediments by affecting metal distribution. , 2021, The Science of the total environment.

[9]  J. Banfield,et al.  Brockarchaeota, a novel archaeal phylum with unique and versatile carbon cycling pathways , 2021, Nature communications.

[10]  Nico J. Claassens Reductive Glycine Pathway: A Versatile Route for One-Carbon Biotech. , 2021, Trends in biotechnology.

[11]  F. Squina,et al.  Insights into the dual cleavage activity of the GH16 laminarinase enzyme class on β-1,3 and β-1,4 glycosidic bonds , 2021, The Journal of biological chemistry.

[12]  Thomas M. Keane,et al.  Twelve years of SAMtools and BCFtools , 2020, GigaScience.

[13]  Vincent J. Denef,et al.  A genomic catalog of Earth’s microbiomes , 2020, Nature Biotechnology.

[14]  J. Li,et al.  Pore-water dissolved inorganic carbon sources and cycling in the shallow sediments of the Haima cold seeps, South China Sea , 2020 .

[15]  B. Dutilh,et al.  Bridging the membrane lipid divide: bacteria of the FCB group superphylum have the potential to synthesize archaeal ether lipids , 2020, The ISME journal.

[16]  B. Baker,et al.  New Microbial Biodiversity in Marine Sediments. , 2020, Annual review of marine science.

[17]  Robert D. Finn,et al.  A unified catalog of 204,938 reference genomes from the human gut microbiome , 2020, Nature Biotechnology.

[18]  C. Tao,et al.  Seawater versus mantle sources of mercury in sulfide-rich seafloor hydrothermal systems, Southwest Indian Ridge , 2020 .

[19]  S. Becker,et al.  Laminarin is a major molecule in the marine carbon cycle , 2020, Proceedings of the National Academy of Sciences.

[20]  Karthik Anantharaman,et al.  VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences , 2020, Microbiome.

[21]  Donovan H Parks,et al.  GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database , 2019, Bioinform..

[22]  Sallie W. Chisholm,et al.  Charting the Complexity of the Marine Microbiome through Single-Cell Genomics , 2019, Cell.

[23]  Karthik Anantharaman,et al.  Genome diversification in globally distributed novel marine Proteobacteria is linked to environmental adaptation , 2019, The ISME Journal.

[24]  V. Müller,et al.  Energy-converting hydrogenases: the link between H2 metabolism and energy conservation , 2019, Cellular and Molecular Life Sciences.

[25]  Thijs J. G. Ettema,et al.  Asgard archaea capable of anaerobic hydrocarbon cycling , 2019, Nature Communications.

[26]  Hiroyuki Ogata,et al.  KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold , 2019, bioRxiv.

[27]  R. Stepanauskas,et al.  Genomic Characterization of Candidate Division LCP-89 Reveals an Atypical Cell Wall Structure, Microcompartment Production, and Dual Respiratory and Fermentative Capacities , 2019, Applied and Environmental Microbiology.

[28]  G. Dick,et al.  The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally , 2019, Nature Reviews Microbiology.

[29]  P. Hugenholtz,et al.  Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments , 2019, Nature Microbiology.

[30]  H. Bange,et al.  Hydroxylamine as a Potential Indicator of Nitrification in the Open Ocean , 2019, Geophysical Research Letters.

[31]  Zhigang Yu,et al.  Long‐Term Nutrient Variations in the Bohai Sea Over the Past 40 Years , 2019, Journal of Geophysical Research: Oceans.

[32]  Filipa L. Sousa,et al.  An electrogenic redox loop in sulfate reduction reveals a likely widespread mechanism of energy conservation , 2018, Nature Communications.

[33]  M. Karlsson,et al.  Comparative evolutionary histories of fungal proteases reveal gene gains in the mycoparasitic and nematode-parasitic fungus Clonostachys rosea , 2018, BMC Evolutionary Biology.

[34]  B. Baker,et al.  Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments , 2018, Nature Communications.

[35]  Q. Saquib,et al.  Distribution of Arsenic Resistance Genes in Prokaryotes , 2018, Front. Microbiol..

[36]  A. Boraston,et al.  Biochemical Reconstruction of a Metabolic Pathway from a Marine Bacterium Reveals Its Mechanism of Pectin Depolymerization , 2018, Applied and Environmental Microbiology.

[37]  D. Sinclair,et al.  Dynamic Acetylation of Phosphoenolpyruvate Carboxykinase Toggles Enzyme Activity between Gluconeogenic and Anaplerotic Reactions. , 2018, Molecular cell.

[38]  Filipe M. Sousa,et al.  Taxonomic distribution, structure/function relationship and metabolic context of the two families of sulfide dehydrogenases: SQR and FCSD. , 2018, Biochimica et biophysica acta. Bioenergetics.

[39]  Donovan H. Parks,et al.  A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life , 2018, Nature Biotechnology.

[40]  R. Amann,et al.  Adaptive mechanisms that provide competitive advantages to marine bacteroidetes during microalgal blooms , 2018, The ISME Journal.

[41]  Tom O. Delmont,et al.  Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes , 2018, Nature Microbiology.

[42]  Sudhir Kumar,et al.  MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. , 2018, Molecular biology and evolution.

[43]  Alexander J Probst,et al.  Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy , 2017, Nature Microbiology.

[44]  Zhenglu Yang,et al.  dbCAN2: a meta server for automated carbohydrate-active enzyme annotation , 2018, Nucleic Acids Res..

[45]  Brian C. Thomas,et al.  Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle , 2018, The ISME Journal.

[46]  M. Kuypers,et al.  The microbial nitrogen-cycling network , 2018, Nature Reviews Microbiology.

[47]  S. Gribaldo,et al.  Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes , 2018, Proceedings of the National Academy of Sciences.

[48]  Alexander Agafonov,et al.  The MAR databases: development and implementation of databases specific for marine metagenomics , 2017, Nucleic Acids Res..

[49]  F. Joos,et al.  Marine N2O Emissions From Nitrification and Denitrification Constrained by Modern Observations and Projected in Multimillennial Global Warming Simulations , 2017 .

[50]  Bruno Contreras-Moreira,et al.  MEBS, a software platform to evaluate large (meta)genomic collections according to their metabolic machinery: unraveling the sulfur cycle , 2017, bioRxiv.

[51]  Jihua Liu,et al.  Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions , 2017, The ISME Journal.

[52]  A. Schramm,et al.  The novel bacterial phylum Calditrichaeota is diverse, widespread and abundant in marine sediments and has the capacity to degrade detrital proteins , 2017, Environmental microbiology reports.

[53]  K. Lancaster,et al.  Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase , 2017, Proceedings of the National Academy of Sciences.

[54]  I-Min A. Chen,et al.  IMG/M: integrated genome and metagenome comparative data analysis system , 2016, Nucleic Acids Res..

[55]  R. Reinhardt,et al.  Genome and catabolic subproteomes of the marine, nutritionally versatile, sulfate-reducing bacterium Desulfococcus multivorans DSM 2059 , 2016, BMC Genomics.

[56]  Brian C. Thomas,et al.  Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system , 2016, Nature Communications.

[57]  S. Okabe,et al.  Hydroxylamine-dependent anaerobic ammonium oxidation (anammox) by "Candidatus Brocadia sinica". , 2016, Environmental microbiology.

[58]  Dan Søndergaard,et al.  HydDB: A web tool for hydrogenase classification and analysis , 2016, Scientific Reports.

[59]  R. Kirkegaard,et al.  mmgenome: a toolbox for reproducible genome extraction from metagenomes , 2016, bioRxiv.

[60]  A. Findlay Microbial impact on polysulfide dynamics in the environment. , 2016, FEMS microbiology letters.

[61]  Peer Bork,et al.  Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees , 2016, Nucleic Acids Res..

[62]  I. Pereira,et al.  Electron transfer between the QmoABC membrane complex and adenosine 5'-phosphosulfate reductase. , 2016, Biochimica et biophysica acta.

[63]  C. Jackson,et al.  Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival , 2015, The ISME Journal.

[64]  Neil D. Rawlings,et al.  Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors , 2015, Nucleic Acids Res..

[65]  P. Nielsen,et al.  Complete nitrification by a single microorganism , 2015, Nature.

[66]  M. Wagner,et al.  Complete nitrification by Nitrospira bacteria , 2015, Nature.

[67]  A. Stams,et al.  Carboxydotrophic growth of Geobacter sulfurreducens , 2015, Applied Microbiology and Biotechnology.

[68]  Frédéric Barras,et al.  Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons , 2015, Nature.

[69]  M. Chinn,et al.  Metabolic Response of Clostridium ljungdahlii to Oxygen Exposure , 2015, Applied and Environmental Microbiology.

[70]  Dongwan D. Kang,et al.  MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities , 2015, PeerJ.

[71]  G. Moreno-Hagelsieb The power of operon rearrangements for predicting functional associations , 2015, Computational and structural biotechnology journal.

[72]  Connor T. Skennerton,et al.  CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes , 2015, Genome research.

[73]  I. Obernosterer,et al.  The transcriptional regulation of the glyoxylate cycle in SAR11 in response to iron fertilization in the Southern Ocean. , 2015, Environmental microbiology reports.

[74]  J. W. Peters,et al.  [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. , 2015, Biochimica et biophysica acta.

[75]  A. Lang,et al.  A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments , 2015, Nature Communications.

[76]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[77]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[78]  V. Müller,et al.  Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria , 2014, Nature Reviews Microbiology.

[79]  Anders F. Andersson,et al.  Binning metagenomic contigs by coverage and composition , 2014, Nature Methods.

[80]  F. Armstrong,et al.  Bacterial formate hydrogenlyase complex , 2014, Proceedings of the National Academy of Sciences.

[81]  S. Tringe,et al.  MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm , 2014, Microbiome.

[82]  G. Webster,et al.  A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere:geosphere interactions , 2014 .

[83]  John A Tainer,et al.  Intact Functional Fourteen-subunit Respiratory Membrane-bound [NiFe]-Hydrogenase Complex of the Hyperthermophilic Archaeon Pyrococcus furiosus* , 2014, The Journal of Biological Chemistry.

[84]  Karthik Anantharaman,et al.  Sulfur Oxidation Genes in Diverse Deep-Sea Viruses , 2014, Science.

[85]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[86]  J. Stolz,et al.  Nitrate and periplasmic nitrate reductases. , 2014, Chemical Society reviews.

[87]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[88]  Holly M. Bik,et al.  PhyloSift: phylogenetic analysis of genomes and metagenomes , 2014, PeerJ.

[89]  M. Thon,et al.  New insights into the evolution and structure of Colletotrichum plant-like subtilisins (CPLSs) , 2013, Communicative & integrative biology.

[90]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[91]  T. Schmidt,et al.  Shallow breathing: bacterial life at low O2 , 2013, Nature Reviews Microbiology.

[92]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[93]  Siu-Ming Yiu,et al.  IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth , 2012, Bioinform..

[94]  Peter D. Karp,et al.  The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases , 2007, Nucleic Acids Res..

[95]  M. Moran,et al.  Genomic insights into bacterial DMSP transformations. , 2012, Annual review of marine science.

[96]  S. Meseck,et al.  Selenium Behavior in San Francisco Bay Sediments , 2012, Estuaries and Coasts.

[97]  M. Sullivan,et al.  Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes , 2011, Nature Reviews Microbiology.

[98]  I. Pereira,et al.  A Comparative Genomic Analysis of Energy Metabolism in Sulfate Reducing Bacteria and Archaea , 2011, Front. Microbio..

[99]  J. Martinussen,et al.  Two nucleoside transporters in Lactococcus lactis with different substrate specificities. , 2010, Microbiology.

[100]  Alexis Criscuolo,et al.  BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments , 2010, BMC Evolutionary Biology.

[101]  I. Pereira,et al.  The Qrc Membrane Complex, Related to the Alternative Complex III, Is a Menaquinone Reductase Involved in Sulfate Respiration* , 2010, The Journal of Biological Chemistry.

[102]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[103]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[104]  T. Silhavy,et al.  An ABC transport system that maintains lipid asymmetry in the Gram-negative outer membrane , 2009, Proceedings of the National Academy of Sciences.

[105]  A. Voragen,et al.  Pectin, a versatile polysaccharide present in plant cell walls , 2009 .

[106]  C. Vetriani,et al.  Adaptation of chemosynthetic microorganisms to elevated mercury concentrations in deep‐sea hydrothermal vents , 2009 .

[107]  R. Cramm Genomic View of Energy Metabolism in Ralstonia eutropha H16 , 2008, Journal of Molecular Microbiology and Biotechnology.

[108]  H. Görisch,et al.  Function and transcriptional regulation of the isocitrate lyase in Pseudomonas aeruginosa , 2008, Archives of Microbiology.

[109]  W. Hagen,et al.  Reinvestigation of the Steady-State Kinetics and Physiological Function of the Soluble NiFe-Hydrogenase I of Pyrococcus furiosus , 2007, Journal of bacteriology.

[110]  N. Brown,et al.  Evidence for direct interactions between the mercuric ion transporter (MerT) and mercuric reductase (MerA) from the Tn501mer operon , 2008, BioMetals.

[111]  Yasutaro Fujita,et al.  Regulation of fatty acid metabolism in bacteria , 2007, Molecular microbiology.

[112]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[113]  H. Bolhuis,et al.  Characterization of marine bacteria and the activity of their enzyme systems involved in degradation of the algal storage glucan laminarin. , 2007, FEMS microbiology ecology.

[114]  C. Lamborg,et al.  Mercury and monomethylmercury in fluids from Sea Cliff submarine hydrothermal field, Gorda Ridge , 2006 .

[115]  R. Hedderich,et al.  Energy-Converting [NiFe] Hydrogenases: More than Just H2 Activation , 2006, Journal of Molecular Microbiology and Biotechnology.

[116]  P. Vignais,et al.  Molecular biology of microbial hydrogenases. , 2004, Current issues in molecular biology.

[117]  R. Oremland,et al.  Dissimilatory Arsenate Reduction with Sulfide as Electron Donor: Experiments with Mono Lake Water and Isolation of Strain MLMS-1, a Chemoautotrophic Arsenate Respirer , 2004, Applied and Environmental Microbiology.

[118]  K. Schleifer,et al.  ARB: a software environment for sequence data. , 2004, Nucleic acids research.

[119]  Radhey S. Gupta,et al.  The Phylogeny and Signature Sequences Characteristics of Fibrobacteres, Chlorobi, and Bacteroidetes , 2004, Critical reviews in microbiology.

[120]  F. Widdel,et al.  Carbon assimilation pathways in sulfate-reducing bacteria II. Enzymes of a reductive citric acid cycle in the autotrophic Desulfobacter hydrogenophilus , 1987, Archives of Microbiology.

[121]  Chi‐Huey Wong,et al.  Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility. , 2004, Angewandte Chemie.

[122]  R. Hedderich,et al.  Physiological role of the F420-non-reducing hydrogenase (Mvh) from Methanothermobacter marburgensis , 2003, Archives of Microbiology.

[123]  D. Arp,et al.  Metabolism of Inorganic N Compounds by Ammonia-Oxidizing Bacteria , 2003, Critical reviews in biochemistry and molecular biology.

[124]  M. Bébien,et al.  Involvement of a putative molybdenum enzyme in the reduction of selenate by Escherichia coli. , 2002, Microbiology.

[125]  S. Silver,et al.  Microbial arsenic: from geocycles to genes and enzymes. , 2002, FEMS microbiology reviews.

[126]  Spencer J. Williams,et al.  Sulfotransferases and sulfatases in mycobacteria. , 2002, Chemistry & biology.

[127]  E. Fukuda,et al.  Substrate recognition by 2-oxoacid:ferredoxin oxidoreductase from Sulfolobus sp. strain 7. , 2002, Biochimica et biophysica acta.

[128]  R. Hedderich,et al.  Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[129]  M. Adams,et al.  Characterization of Hydrogenase II from the Hyperthermophilic Archaeon Pyrococcus furiosus and Assessment of Its Role in Sulfur Reduction , 2000, Journal of bacteriology.

[130]  J. Papenbrock,et al.  Characterization of a sulfurtransferase from Arabidopsis thaliana. , 2000, European journal of biochemistry.

[131]  J. Santini,et al.  Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction , 2000, Archives of Microbiology.

[132]  L. Wyns,et al.  The essential catalytic redox couple in arsenate reductase from Staphylococcus aureus. , 1999, Biochemistry.

[133]  M. Keller,et al.  Anaerobic respiration with elemental sulfur and with disulfides , 1998 .

[134]  M. Osteras,et al.  Presence of a gene encoding choline sulfatase in Sinorhizobium meliloti bet operon: choline-O-sulfate is metabolized into glycine betaine. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[135]  W. Whitman,et al.  Prokaryotes: the unseen majority. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[136]  C. Clayton,et al.  Helicobacter pylori porCDAB and oorDABCGenes Encode Distinct Pyruvate:Flavodoxin and 2-Oxoglutarate:Acceptor Oxidoreductases Which Mediate Electron Transport to NADP , 1998, Journal of bacteriology.

[137]  K. Soda,et al.  Cysteine sulfinate desulfinase, a NIFS-like protein of Escherichia coli with selenocysteine lyase and cysteine desulfurase activities. Gene cloning, purification, and characterization of a novel pyridoxal enzyme. , 1997, The Journal of biological chemistry.

[138]  J. Neff Ecotoxicology of arsenic in the marine environment , 1997 .

[139]  Akiyasu C. Yoshizawa,et al.  KAAS: an automatic genome annotation and pathway reconstruction server , 2007, Environmental health perspectives.

[140]  T. Oshima,et al.  2-oxoacid:ferredoxin oxidoreductase from the thermoacidophilic archaeon, Sulfolobus sp. strain 7. , 1996, Journal of biochemistry.

[141]  T. Haverkamp,et al.  Reaction mechanism of thioredoxin: 3'-phospho-adenylylsulfate reductase investigated by site-directed mutagenesis. , 1995, European journal of biochemistry.

[142]  B. Guigliarelli,et al.  Isolation and characterization of the pyruvate-ferredoxin oxidoreductase from the sulfate-reducing bacterium Desulfovibrio africanus. , 1995, Biochimica et biophysica acta.

[143]  A. Sirko,et al.  Sulfate and thiosulfate transport in Escherichia coli K-12: evidence for a functional overlapping of sulfate- and thiosulfate-binding proteins , 1995, Journal of bacteriology.

[144]  G. Gisselmann,et al.  The ferredoxin:sulphite reductase gene from Synechococcus PCC7942. , 1993, Biochimica et biophysica acta.

[145]  M. Adams,et al.  Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[146]  A. Böck,et al.  Selenocysteine synthase from Escherichia coli. Nucleotide sequence of the gene (selA) and purification of the protein. , 1991, The Journal of biological chemistry.

[147]  A. Böck,et al.  In vitro synthesis of selenocysteinyl-tRNA(UCA) from seryl-tRNA(UCA): involvement and characterization of the selD gene product. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[148]  S. Blanquet,et al.  Molecular cloning and primary structure of the Escherichia coli methionyl-tRNA synthetase gene , 1984, Journal of bacteriology.

[149]  C. Walsh,et al.  Mercuric reductase: homology to glutathione reductase and lipoamide dehydrogenase. Iodoacetamide alkylation and sequence of the active site peptide. , 1983, Biochemistry.

[150]  J. J. Lucas,et al.  Choline sulfatase of Pseudomonas aeruginosa. , 1972, Archives of biochemistry and biophysics.