Hybrid Approaches-Based Sliding-Mode Control for pH Process Control

This paper presents two hybrid control topologies; the topologies are designed by combining artificial intelligence approaches and sliding-mode control methodology. The first topology mixes the learning algorithm for multivariable data analysis (LAMDA) approach with sliding-mode control. The second offers a Takagi–Sugeno multimodel approach, internal model, and sliding-mode control. The process under study is a nonlinear pH neutralization process with high nonlinearities and time-varying parameters. The pH process is simulated for multiple reference changes, disturbance rejection, and noise in the transmitter. Performance indices are used to compare the proposed approaches quantitatively. The hybrid control topologies enhance the performance and robustness of the pH process under study.

[1]  Jong Woo Kim,et al.  Data-driven offset-free multilinear model predictive control using constrained differential dynamic programming , 2021, Journal of Process Control.

[2]  O. Camacho,et al.  Adaptive Sliding Mode Control for a pH Neutralization Reactor: An approach based on Takagi-Sugeno Fuzzy Multimodel , 2021, 2021 IEEE Fifth Ecuador Technical Chapters Meeting (ETCM).

[3]  Víctor H. Andaluz,et al.  LAMDA Controller Applied to the Trajectory Tracking of an Aerial Manipulator , 2021, Applied Sciences.

[4]  Andrés Rosales,et al.  An intelligent sliding mode controller based on LAMDA for a class of SISO uncertain systems , 2021, Inf. Sci..

[5]  Jiashuang Wan,et al.  A multiple-model based internal model control method for power control of small pressurized water reactors , 2020 .

[6]  Jun Liang,et al.  Optimization and Sliding Mode Control of Dividing-Wall Column , 2020 .

[7]  Manuel Mera,et al.  A sliding-mode based controller for trajectory tracking of perturbed Unicycle Mobile Robots , 2020 .

[8]  Kwang Y. Lee,et al.  Multi-model based predictive sliding mode control for bed temperature regulation in circulating fluidized bed boiler , 2020 .

[9]  Clara M. Ionescu,et al.  Generalization of the FOPDT Model for Identification and Control Purposes , 2020, Processes.

[10]  Vadim I. Utkin,et al.  Road Map for Sliding Mode Control Design , 2020 .

[11]  Mohammad Haeri,et al.  A multi-model control of nonlinear systems: A cascade decoupled design procedure based on stability and performance , 2020, Trans. Inst. Meas. Control.

[12]  Claudia Isaza,et al.  LAMDA-HAD, an Extension to the LAMDA Classifier in the Context of Supervised Learning , 2020, Int. J. Inf. Technol. Decis. Mak..

[13]  Oscar Camacho,et al.  Flash Distillation Control Using a Feasible Operating Region: A Sliding Mode Control Approach , 2020 .

[14]  A. Seshagiri Rao,et al.  Evaluation of gap-metric based multi-model control schemes for nonlinear systems: An experimental study. , 2019, ISA transactions.

[15]  Hongjiu Yang,et al.  Observer-based sliding mode control for bilateral teleoperation with time-varying delays , 2019, Control Engineering Practice.

[16]  L. Morales,et al.  Applicability of LAMDA as classification model in the oil production , 2019, Artificial Intelligence Review.

[17]  Leonid Fridman,et al.  When is it reasonable to implement the discontinuous sliding‐mode controllers instead of the continuous ones? Frequency domain criteria , 2018, International Journal of Robust and Nonlinear Control.

[18]  Paulo Leica,et al.  P+d Plus Sliding Mode Control for Bilateral Teleoperation of a Mobile Robot , 2018, International Journal of Control, Automation and Systems.

[19]  Bing Wu,et al.  An integrated output space partition and optimal control method of multiple-model for nonlinear systems , 2018, Comput. Chem. Eng..

[20]  Utkal V. Mehta,et al.  Smith predictor with sliding mode control for processes with large dead times , 2017 .

[21]  R Sanz,et al.  A generalized smith predictor for unstable time-delay SISO systems. , 2017, ISA transactions.

[22]  Shaoyuan Li,et al.  Switched Offline Multiple Model Predictive Control with Polyhedral Invariant Sets , 2017 .

[23]  Sami El-Ferik,et al.  Modeling and Identification of Nonlinear Systems: A Review of the Multimodel Approach—Part 2 , 2017, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[24]  Andrés Rosales,et al.  A dynamical sliding mode control approach for long deadtime systems , 2017, 2017 4th International Conference on Control, Decision and Information Technologies (CoDIT).

[25]  Paulo Leica,et al.  A fixed-frequency Sliding-mode control in a cascade scheme for the Half-bridge Bidirectional DC-DC converter , 2016, 2016 IEEE Ecuador Technical Chapters Meeting (ETCM).

[26]  R. Dhanasekar,et al.  Sliding mode control of electric drives/review , 2016, 2016 IEEE International Conference on Automatica (ICA-ACCA).

[27]  Andrés Rosales,et al.  Experimental comparison of control strategies for trajectory tracking for mobile robots , 2016, Int. J. Autom. Control..

[28]  Vadim I. Utkin,et al.  Chattering analysis of conventional and super twisting sliding mode control algorithm , 2016, 2016 14th International Workshop on Variable Structure Systems (VSS).

[29]  B. Meenakshipriya,et al.  Designing of PID Controllers for pH Neutralization Process , 2016 .

[30]  Jingjing Du,et al.  Multilinear model decomposition of MIMO nonlinear systems and its implication for multilinear model-based control , 2013 .

[31]  Hare Krishna Mohanta,et al.  Neural Control of Neutralization Process using Fuzzy Inference System based Lookup Table , 2013 .

[32]  M. Z. Jahromi,et al.  Chattering-free fuzzy sliding mode control in MIMO uncertain systems , 2009 .

[33]  Mehdi Roopaei,et al.  Adaptive fuzzy sliding mode control scheme for uncertain systems , 2009 .

[34]  Ridha Ben Abdennour,et al.  Real-time application of discrete second order sliding mode control to a chemical reactor , 2009 .

[35]  R. Bozorgmehry Boozarjomehry,et al.  A fuzzy sliding mode control approach for nonlinear chemical processes , 2009 .

[36]  Der-Cherng Liaw,et al.  A Study of T–S Model-Based SMC Scheme With Application to Robot Control , 2008, IEEE Transactions on Industrial Electronics.

[37]  Joao P. Hespanha,et al.  Multi-model adaptive control of a simulated pH neutralization process , 2007 .

[38]  E. Iglesias,et al.  Fuzzy surface-based sliding mode control. , 2007, ISA transactions.

[39]  Jeongho Cho,et al.  Quasi-sliding mode control strategy based on multiple-linear models , 2007, Neurocomputing.

[40]  G. Feng,et al.  A Survey on Analysis and Design of Model-Based Fuzzy Control Systems , 2006, IEEE Transactions on Fuzzy Systems.

[41]  Ahmet Palazoglu,et al.  Multimodel Scheduling Control of Nonlinear Systems Using Gap Metric , 2004 .

[42]  Wen Tan,et al.  Multimodel analysis and controller design for nonlinear processes , 2004, Comput. Chem. Eng..

[43]  Jose A. Romagnoli,et al.  Real-time implementation of multi-linear model-based control strategies––an application to a bench-scale pH neutralization reactor , 2004 .

[44]  Oscar Camacho,et al.  A sliding mode control proposal for open-loop unstable processes. , 2004, ISA transactions.

[45]  Emad Ali,et al.  pH Control Using PI Control Algorithms With Automatic Tuning Method , 2001 .

[46]  Sigurd Skogestad,et al.  pH-neutralization: integrated process and control design , 2000, Comput. Chem. Eng..

[47]  Robert Shorten,et al.  On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models , 2000, IEEE Trans. Fuzzy Syst..

[48]  Smith,et al.  Sliding mode control: an approach to regulate nonlinear chemical processes , 2000, ISA transactions.

[49]  Dale E. Seborg,et al.  Adaptive nonlinear control of a pH neutralization process , 1994, IEEE Trans. Control. Syst. Technol..

[50]  Masayoshi Tomizuka,et al.  Fuzzy gain scheduling of PID controllers , 1992, [Proceedings 1992] The First IEEE Conference on Control Applications.

[51]  H. Sira-Ramírez Dynamical sliding mode control strategies in the regulation of nonlinear chemical processes , 1992 .

[52]  Guang-Chyan Hwang,et al.  A stability approach to fuzzy control design for nonlinear systems , 1992 .

[53]  R. A. Wright,et al.  Nonlinear control of pH processes using the strong acid equivalent , 1991 .

[54]  A. Rosales,et al.  A Fuzzy Sliding-Mode Control Based on Z-Numbers and LAMDA , 2021, IEEE Access.

[55]  P. Leica,et al.  LAMDA Control Approaches Applied to Trajectory Tracking for Mobile Robots , 2021, IEEE Access.

[56]  Hugo Leiva,et al.  An approach of dynamic sliding mode control for chemical processes , 2020 .

[57]  Jose Aguilar,et al.  An Automatic Merge Technique to Improve the Clustering Quality Performed by LAMDA , 2020, IEEE Access.

[58]  L. Estofanero,et al.  Predictive Controller Applied to a pH Neutralization Process , 2019, IFAC-PapersOnLine.

[59]  Snehal D. Kambale,et al.  Controllers used in pH Neutralization Process: A Review , 2015 .

[60]  Ravindra Munje,et al.  Design of Sliding Mode Controller to Chemical Processes for Improved Performance , 2011 .

[61]  Raymond A. de Callafon,et al.  IDENTIFICATION FOR CONTROL , 2009 .

[62]  A.,et al.  Principles and Practice of Automatic Process Control , 2007 .

[63]  Marco E. Sanjuan,et al.  Using fuzzy logic to enhance control performance of sliding mode control and dynamic matrix control , 2006 .

[64]  Oscar Camacho,et al.  A PREDICTIVE APPROACH BASED-SLIDING MODE CONTROL , 2002 .

[65]  Dimiter Driankov,et al.  Fuzzy Model Identification , 1997, Springer Berlin Heidelberg.

[66]  Michel Gevers,et al.  Identification for control , 1996 .

[67]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .