High efficiency heterojunction with intrinsic thin layer solar cell: A short review

Heterojunction with intrinsic thin layer (HIT) solar cell has attracted attention of photovoltaic research community due to its low process temperature, as compared to crystalline silicon (c-Si) solar cell and relatively high efficiency (η). In this solar cell structure, thin intrinsic amorphous silicon layers are used as surface passivator, which also acts as buffer layer at the top as well as bottom surfaces of n-type crystalline silicon (c-Si) wafer. A thin p-type a-Si top layer acts as an emitter while highly doped n-type bottom layer is used as a back surface field. There have been suggestions that the device performance comes with significant tunnelling transport of the charge carriers across junction barriers, whereas other investigation suggests that the diffusion of the carriers may be adequate. Various experimental as well as theoretical investigations were carried out to characterize and improve performance of HIT solar cell. For example, it was reported that a thicker p-type emitter (up to 40nm) shows higher open circuit voltage, although short circuit current density (Jsc) and cell efficiency decreases. Recent investigation showed that when the p-type and i-type layer thickness increased (within 4 nm) the open circuit voltage (Voc) as well as the efficiency improves. Using thinner c-Si absorbed is another interesting aspect in which a light trapping scheme can be combined to achieve a better performance characteristics. There has been several theoretical as well as experimental investigations on the use of various types of emitter layer and intrinsic layer of the cell, and their role on the Jsc, Voc, η and fill factor (FF). Investigations of HIT solar cell on p-type c-Si wafers have also been carried out. In this article we will present a brief review on some of the important aspects of the HIT solar cell.

[1]  J. Cárabe,et al.  Influence of interface treatments on the performance of silicon heterojunction solar cells , 2002 .

[2]  W. F. V. D. Weg,et al.  Performance of heterojunction p+ microcrystalline silicon n crystalline silicon solar cells , 1997 .

[3]  M. Schubert,et al.  Low-temperature a-Si:H/ZnO/Al back contacts for high-efficiency silicon solar cells , 2006 .

[4]  E. Centurioni,et al.  Silicon heterojunction solar cell: a new buffer Layer concept with low-temperature epitaxial silicon , 2004, IEEE Transactions on Electron Devices.

[5]  B. To,et al.  Crystal silicon heterojunction solar cells by hot-wire CVD , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[6]  L. Korte,et al.  Heterojunctions of hydrogenated amorphous silicon and monocrystalline silicon , 2006 .

[7]  A. Sasaki,et al.  Carrier transport processes in p-n junction layers with a distribution of trap levels , 1991 .

[8]  V. Dao,et al.  Simulation and study of the influence of the buffer intrinsic layer, back-surface field, densities of interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin-layer (HIT) solar cell , 2010 .

[9]  D. Lin,et al.  Temperature-dependent contactless electroreflectance and photoluminescence study of GaAlAs/InGaAs/GaAs pseudomorphic high electron mobility transistor structures , 2001 .

[10]  Mario Tucci,et al.  17% Efficiency heterostructure solar cell based on p-type crystalline silicon , 2004 .

[11]  Influence of atomic hydrogen on the growth kinetics of a-Si:H films and on the properties of silicon substrates , 2001 .

[12]  Y. Hatanaka,et al.  Carrier transport mechanisms of p-type amorphous-n-type crystalline silicon heterojunctions , 1992 .

[13]  V. Lysenko,et al.  Carrier transport in amorphous SiC/crystalline silicon heterojunctions , 2001 .

[14]  B. Hoex,et al.  Real-time study of α-Si:H/c-Si heterointerface formation and epitaxial Si growth by spectroscopic ellipsometry, infrared spectroscopy, and second-harmonic generation , 2008 .

[15]  V. Dao,et al.  rf-Magnetron sputtered ITO thin films for improved heterojunction solar cell applications , 2010 .

[16]  A. K. Jonscher,et al.  Electronic processes in non-crystalline materials: By N. F. Mott and E. A. Davis, Clarendon Press: Oxford Univ. Press, Oxford, 1971; 437 pp. Price: £7.50 , 1972 .

[17]  V. Dao,et al.  Interface Characterization and Electrical Transport Mechanisms in a-Si:H/c-Si Heterojunction Solar Cells , 2011 .

[18]  W. Fahrner,et al.  The influence of the amorphous silicon deposition temperature on the efficiency of the ITO/A-Si:H/C-Si heterojunction (HJ) solar cells and properties of interfaces , 2002 .

[19]  E. Fortunato,et al.  Heterojunction solar cells with n-type nanocrystalline silicon emitters on p-type c-Si wafers , 2006 .

[20]  W. Fuhs,et al.  Heterojunctions of Amorphous Silicon and Silicon Single Crystals , 1974 .

[21]  M. Taguchi,et al.  HITTM cells—high-efficiency crystalline Si cells with novel structure , 2000 .

[22]  R. M. Swanson,et al.  A 720 mV open circuit voltage SiOx:c‐Si:SiOx double heterostructure solar cell , 1985 .

[23]  M. Schubert,et al.  Recombination and resistive losses at ZnO /a-Si:H/c-Si interfaces in heterojunction back contacts for Si solar cells , 2007 .

[24]  Hiroyuki Fujiwara,et al.  High-mobility hydrogen-doped In2O3 transparent conductive oxide for a-Si:H/c-Si heterojunction solar cells , 2009 .

[25]  L. Korte,et al.  Passivation of textured substrates for a-Si:H/c-Si hetero-junction solar cells: Effect of wet-chemical smoothing and intrinsic a-Si:H interlayer , 2009 .

[26]  T. Mueller,et al.  Investigation of the emitter band gap widening of heterojunction solar cells by use of hydrogenated amorphous carbon silicon alloys , 2007 .

[27]  M. Konagai,et al.  Surface Passivation of Crystalline and Polycrystalline Silicon Using Hydrogenated Amorphous Silicon Oxide Film , 2007 .

[28]  M. Taguchi,et al.  More than 16% solar cells with a new 'HIT' (doped a-Si/nondoped a-Si/crystalline Si) structure , 1991, The Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference - 1991.

[29]  B. Rech,et al.  Electrical transport mechanisms in a-Si:H/c-Si heterojunction solar cells , 2010 .

[30]  E. Centurioni,et al.  Homojunction and heterojunction silicon solar cells deposited by low temperature-high frequency plasma enhanced chemical vapour deposition , 2002 .

[31]  Y. Xu,et al.  Development of a hot-wire chemical vapor deposition n-type emitter on p-type crystalline Si-based solar cells , 2003 .

[32]  F. Rubinelli,et al.  Amorphous-crystalline silicon heterojunction: Theoretical evaluation of the current terms , 1989 .

[33]  Analysis of thin layers and interfaces in ITO/a-Si:H/c-Si heterojunction solar cell structures by secondary ion mass spectrometry , 2006 .

[34]  Makoto Tanaka,et al.  Twenty-two percent efficiency HIT solar cell , 2009 .

[35]  Hideyo Okushi,et al.  Electrical properties of n-amorphous/p-crystalline silicon heterojunctions , 1984 .

[36]  B. Jagannathan,et al.  Amorphous silicon/p-type crystalline silicon heterojunction solar cells , 1997 .

[37]  W. Anderson,et al.  Amorphous silicon/p-type crystalline silicon heterojunction solar cells with a microcrystalline silicon buffer layer , 2000 .

[38]  Wyatt K. Metzger,et al.  The role of amorphous silicon and tunneling in heterojunction with intrinsic thin layer (HIT) solar cells , 2009 .

[39]  J. Werner,et al.  Recombination mechanisms in amorphous silicon/crystalline silicon heterojunction solar cells , 2000 .

[40]  R. Stangl,et al.  Characterization and optimization of the interface quality in amorphous/crystalline silicon heterojunction solar cells , 2006 .

[41]  Ralf B. Bergmann,et al.  Optimization and characterization of amorphous/crystalline silicon heterojunction solar cells , 2002 .

[42]  M. Taguchi,et al.  Development status of high-efficiency HIT solar cells , 2011 .

[43]  H. Fujiwara,et al.  Impact of epitaxial growth at the heterointerface of a-Si:H∕c-Si solar cells , 2007 .

[44]  D. Levi,et al.  Effect of emitter deposition temperature on surface passivation in hot-wire chemical vapor deposited silicon heterojunction solar cells , 2006 .

[45]  M. Rahmouni,et al.  Insights gained from computer modeling of heterojunction with instrinsic thin layer “HIT” solar cells , 2010 .

[46]  M. Taguchi,et al.  24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer , 2013, IEEE Journal of Photovoltaics.

[47]  F. A. Rubinelli,et al.  Amorphous Silicon Carbide/Crystalline Silicon Heterojunction Solar Cells: A Comprehensive Study of the Photocarrier Collection , 1998 .

[48]  U. Das,et al.  Effect of texturing and surface preparation on lifetime and cell performance in heterojunction silicon solar cells , 2008 .

[49]  Makoto Tanaka,et al.  Temperature Dependence of Amorphous/Crystalline Silicon Heterojunction Solar Cells , 2008 .

[50]  Rolf Brendel,et al.  20.1%‐efficient crystalline silicon solar cell with amorphous silicon rear‐surface passivation , 2005 .

[51]  S. M. Iftiquar,et al.  Interfacial barrier height modification of indium tin oxide/a-Si:H(p) via control of density of interstitial oxygen for silicon heterojunction solar cell application , 2013 .

[52]  H. Fujiwara,et al.  Real-time monitoring and process control in amorphous∕crystalline silicon heterojunction solar cells by spectroscopic ellipsometry and infrared spectroscopy , 2005 .

[53]  李幼升,et al.  Ph , 1989 .

[54]  R. Brendel,et al.  Low‐temperature formation of local Al contacts to a‐Si:H‐passivated Si wafers , 2004 .

[55]  Makoto Tanaka,et al.  Development of New a-Si/c-Si Heterojunction Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer) , 1992 .

[56]  A. Maldonado,et al.  Physical properties of ZnO:F obtained from a fresh and aged solution of zinc acetate and zinc acetylacetonate , 2006 .

[57]  Influence of the band offset on the performance of photodevices based on the c-Si/a-Si:H heterostructure , 2001 .

[58]  Qi Wang,et al.  High-efficiency hydrogenated amorphous/crystalline Si heterojunction solar cells , 2009 .

[59]  M. Taguchi,et al.  The Approaches for High Efficiency HITTM Solar Cell with Very Thin (<100 µm) Silicon Wafer over 23% , 2011 .

[60]  M. Tanaka,et al.  Development of hit solar cells with more than 21% conversion efficiency and commercialization of highest performance hit modules , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[61]  M. Schmidt,et al.  Efficient silicon heterojunction solar cells based on p‐ and n‐type substrates processed at temperatures < 220°C , 2006 .

[62]  M. Kondo,et al.  Abruptness of a-Si :H/c-Si interface revealed by carrier lifetime measurements , 2007 .

[63]  W. Beyer,et al.  Reinterpretation of the silicon-hydrogen stretch frequencies in amorphous silicon , 1983 .

[64]  Manfred Schmidt,et al.  Physical aspects of a-Si:H/c-Si hetero-junction solar cells , 2007 .

[65]  T. Sawada,et al.  High-efficiency a-Si/c-Si heterojunction solar cell , 1994, Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC).

[66]  R. Stangl,et al.  Advances in a-Si:H/c-Si heterojunction solar cell fabrication and characterization , 2009 .

[67]  Experiments on Ge-GaAs heterojunctions , 1962 .

[68]  H. Fujiwara,et al.  Effects of a‐Si:H layer thicknesses on the performance of a‐Si:H∕c‐Si heterojunction solar cells , 2007 .

[69]  Christophe Ballif,et al.  Model for a-Si: H/c-Si interface recombination based on the amphoteric nature of silicon dangling bonds , 2007 .

[70]  K. Yoon,et al.  Effect of hydrogen dilution on intrinsic a-Si:H layer between emitter and Si wafer in silicon heterojunction solar cell , 2008 .

[71]  E. Centurioni,et al.  Role of front contact work function on amorphous silicon/crystalline silicon heterojunction solar cell performance , 2003, IEEE Electron Device Letters.

[72]  H. Fujiwara,et al.  Reduction of Optical Loss in Hydrogenated Amorphous Silicon/Crystalline Silicon Heterojunction Solar Cells by High-Mobility Hydrogen-Doped In2O3 Transparent Conductive Oxide , 2008 .

[73]  S. K. Pang,et al.  Plasma-enhanced chemical-vapor-deposited oxide for low surface recombination velocity and high effective lifetime in silicon , 1993 .

[74]  P. Cabarrocas,et al.  About the efficiency limits of heterojunction solar cells , 2006 .

[75]  Makoto Tanaka,et al.  Obtaining a higher Voc in HIT cells , 2005 .