A new continuum model for viscoplasticity in metallic glasses based on thermodynamics and its application to creep tests

[1]  G. Gutiérrez,et al.  Precursors to plastic failure in a numerical simulation of CuZr metallic glass , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  Yong Yang,et al.  Structural heterogeneities and mechanical behavior of amorphous alloys , 2019, Progress in Materials Science.

[3]  A. Hirata,et al.  Spatial heterogeneity as the structure feature for structure–property relationship of metallic glasses , 2018, Nature Communications.

[4]  L. Dai,et al.  A free energy landscape perspective on the nature of collective diffusion in amorphous solids , 2018, Acta Materialia.

[5]  S. Yip,et al.  Understanding the mechanisms of amorphous creep through molecular simulation , 2017, Proceedings of the National Academy of Sciences.

[6]  Sebastian Toro,et al.  A phase-field model for solute-assisted brittle fracture in elastic-plastic solids , 2017 .

[7]  Sui‐Dong Wang,et al.  The stochastic transition from size dependent to size independent yield strength in metallic glasses , 2017 .

[8]  W. Arnold,et al.  Linking macroscopic rejuvenation to nano-elastic fluctuations in a metallic glass , 2017 .

[9]  H. Waisman,et al.  Combined stability analysis of phase-field dynamic fracture and shear band localization , 2017 .

[10]  Chris H. Rycroft,et al.  Coarse graining atomistic simulations of plastically deforming amorphous solids. , 2017, Physical review. E.

[11]  T. Kawasaki,et al.  Identifying time scales for violation/preservation of Stokes-Einstein relation in supercooled water , 2017, Science Advances.

[12]  L. Dai,et al.  Direct atomic-scale evidence for shear-dilatation correlation in metallic glasses , 2016 .

[13]  Anders Logg,et al.  The FEniCS Project Version 1.5 , 2015 .

[14]  S. Zapperi,et al.  Universal features of amorphous plasticity , 2015, Nature Communications.

[15]  F. Puosi,et al.  Elastic consequences of a single plastic event: Towards a realistic account of structural disorder and shear wave propagation in models of flowing amorphous solids , 2015, 1503.01572.

[16]  K. Yao,et al.  Direct experimental evidence of nano-voids formation and coalescence within shear bands , 2014 .

[17]  C. Miehe,et al.  Mixed variational potentials and inherent symmetries of the Cahn–Hilliard theory of diffusive phase separation , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  Evan Ma,et al.  Shear bands in metallic glasses , 2013 .

[19]  L. Anand A Cahn–Hilliard-type theory for species diffusion coupled with large elastic–plastic deformations , 2012 .

[20]  T. Tsui,et al.  Increased time-dependent room temperature plasticity in metallic glass nanopillars and its size-dependency , 2012 .

[21]  F. Gao,et al.  A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries , 2012 .

[22]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[23]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[24]  M. Soljačić,et al.  Probing topological protection using a designer surface plasmon structure , 2012, Nature Communications.

[25]  Jun Sun,et al.  Approaching the ideal elastic limit of metallic glasses , 2012, Nature Communications.

[26]  Masao Doi,et al.  Onsager’s variational principle in soft matter , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  J. Kysar,et al.  Residual plastic strain recovery driven by grain boundary diffusion in nanocrystalline thin films , 2011 .

[28]  Wei Zhang,et al.  Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy. , 2011, Physical review letters.

[29]  N. Thadhani,et al.  Mechanical properties of bulk metallic glasses , 2010 .

[30]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[31]  Huajian Gao,et al.  Analytical model and molecular dynamics simulations of the size dependence of flow stress in amorphous intermetallic nanowires at temperatures near the glass transition , 2010 .

[32]  Hajime Tanaka,et al.  Inhomogeneous flow and fracture of glassy materials. , 2009, Nature materials.

[33]  Wei Wang,et al.  Prediction of shear-band thickness in metallic glasses , 2009 .

[34]  Huajian Gao,et al.  Recoverable creep deformation and transient local stress concentration due to heterogeneous grain-boundary diffusion and sliding in polycrystalline solids , 2008 .

[35]  T. P. G. Thamburaja,et al.  Coupled thermo-mechanical modelling of bulk-metallic glasses: Theory, finite-element simulations and experimental verification , 2007 .

[36]  A. L. Greer,et al.  Thickness of shear bands in metallic glasses , 2006 .

[37]  W. Johnson,et al.  A universal criterion for plastic yielding of metallic glasses with a (T/Tg) 2/3 temperature dependence. , 2005, Physical review letters.

[38]  C. Su,et al.  A theory for amorphous viscoplastic materials undergoing finite deformations, with application to metallic glasses , 2005 .

[39]  A. Granato,et al.  An interstitialcy theory of structural relaxation and related viscous flow of glasses. , 2004, Physical review letters.

[40]  H. Schober Diffusion in a model metallic glass: Heterogeneity and ageingPresented at the 85th Bunsen Colloquium on ?Atomic Transport in Solids: Theory and Experiment?, Gieen, Germany, October 31, 2003. , 2004, cond-mat/0502610.

[41]  U. Harms,et al.  Effects of plastic deformation on the elastic modulus and density of bulk amorphous Pd40Ni10Cu30P20 , 2003 .

[42]  Franz Faupel,et al.  Diffusion in Metallic Glasses and Supercooled Melts , 2003 .

[43]  T. Nieh,et al.  Strain rate-dependent deformation in bulk metallic glasses , 2002 .

[44]  Z. Suo,et al.  Inhomogeneous deformation in metallic glasses , 2002 .

[45]  A. Inoue,et al.  High-Strain-Rate Superplasticity due to Newtonian Viscous Flow in La55Al25Ni20 Metallic Glass , 1999 .

[46]  A. Yavari,et al.  High packing density of Zr- and Pd-based bulk amorphous alloys , 1998 .

[47]  M. Gurtin Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance , 1996 .

[48]  Granato Interstitialcy model for condensed matter states of face-centered-cubic metals. , 1992, Physical review letters.

[49]  A. Taub,et al.  Stress-strain rate dependence of homogeneous flow in metallic glasses , 1980 .

[50]  H. Chen The influence of structural relaxation on the density and Young’s modulus of metallic glasses , 1978 .

[51]  Frans Spaepen,et al.  A microscopic mechanism for steady state inhomogeneous flow in metallic glasses , 1977 .

[52]  P. Dederichs,et al.  Change of elastic constants due to interstitials , 1975 .

[53]  W. Nix,et al.  A phenomenological theory of transient creep , 1970 .

[54]  F. Nabarro Steady-state diffusional creep , 1967 .

[55]  Robert L. Coble,et al.  A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials , 1963 .

[56]  John E. Hilliard,et al.  Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 1959 .

[57]  Conyers Herring,et al.  Diffusional Viscosity of a Polycrystalline Solid , 1950 .

[58]  J. Gibbs On the equilibrium of heterogeneous substances , 1878, American Journal of Science and Arts.

[59]  H. Mehrer Diffusion in solids : fundamentals, methods, materials, diffusion-controlled processes , 2007 .

[60]  M. E. Kassner,et al.  Five-power-law creep in single phase metals and alloys , 2000 .

[61]  Kumbakonam R. Rajagopal,et al.  Mechanical Response of Polymers: An Introduction , 2000 .

[62]  A. Argon Plastic deformation in metallic glasses , 1979 .