STUDYING EXTREME ULTRAVIOLET WAVE TRANSIENTS WITH A DIGITAL LABORATORY: DIRECT COMPARISON OF EXTREME ULTRAVIOLET WAVE OBSERVATIONS TO GLOBAL MAGNETOHYDRODYNAMIC SIMULATIONS

In this work, we describe our effort to explore the signatures of large-scale extreme ultraviolet (EUV) transients in the solar corona (EUV waves) using a three-dimensional thermodynamic magnetohydrodynamic model. We conduct multiple simulations of the 2008 March 25 EUV wave (∼18:40 UT), observed both on and off of the solar disk by the STEREO-A and B spacecraft. By independently varying fundamental parameters thought to govern the physical mechanisms behind EUV waves in each model, such as the ambient magneto-sonic speed, eruption free energy, and eruption handedness, we are able to assess their respective contributions to the transient signature. A key feature of this work is the ability to synthesize the multi-filter response of the STEREO Extreme UltraViolet Imagers directly from model data, which gives a means for direct interpretation of EUV observations with full knowledge of the three-dimensional magnetic and thermodynamic structures in the simulations. We discuss the implications of our results with respect to some commonly held interpretations of EUV waves (e.g., fast-mode magnetosonic wave, plasma compression, reconnection front, etc.) and present a unified scenario which includes both a wave-like component moving at the fast magnetosonic speed and a coherent driven compression front related to the eruptive event itself.

[1]  A. Vourlidas,et al.  Toward understanding the early stages of an impulsively accelerated coronal mass ejection - SECCHI observations , 2010, 1008.1171.

[2]  G. Attrill DISPELLING ILLUSIONS OF REFLECTION: A NEW ANALYSIS OF THE 2007 MAY 19 CORONAL “WAVE” EVENT , 2010 .

[3]  L. Ofman,et al.  GLOBAL SIMULATION OF AN EXTREME ULTRAVIOLET IMAGING TELESCOPE WAVE , 2010 .

[4]  H. Q. Yang,et al.  The Dependence of the EIT Wave Velocity on the Magnetic Field Strength , 2010, 1002.3955.

[5]  J. Vial,et al.  LARGE-SCALE EXTREME-ULTRAVIOLET DISTURBANCES ASSOCIATED WITH A LIMB CORONAL MASS EJECTION , 2010 .

[6]  U. Michigan,et al.  TOWARD A REALISTIC THERMODYNAMIC MAGNETOHYDRODYNAMIC MODEL OF THE GLOBAL SOLAR CORONA , 2009, 0912.2647.

[7]  L. Golub,et al.  A NEW VIEW OF CORONAL WAVES FROM STEREO , 2009 .

[8]  G. Attrill,et al.  EIT Waves: A Changing Understanding over a Solar Cycle , 2009 .

[9]  Angelos Vourlidas,et al.  FIRST MEASUREMENTS OF THE MASS OF CORONAL MASS EJECTIONS FROM THE EUV DIMMING OBSERVED WITH STEREO EUVI A+B SPACECRAFT , 2009 .

[10]  P. Testa,et al.  HINODE/XRT AND STEREO OBSERVATIONS OF A DIFFUSE CORONAL “WAVE”–CORONAL MASS EJECTION–DIMMING EVENT , 2009 .

[11]  G. Attrill,et al.  NUMERICAL SIMULATION OF AN EUV CORONAL WAVE BASED ON THE 2009 FEBRUARY 13 CME EVENT OBSERVED BY STEREO , 2009, 0909.3095.

[12]  M. Aschwanden 4-D modeling of CME expansion and EUV dimming observed with STEREO/EUVI , 2009, 0908.1913.

[13]  Chengcai Shen,et al.  NUMERICAL EXPERIMENTS OF WAVE-LIKE PHENOMENA CAUSED BY THE DISRUPTION OF AN UNSTABLE MAGNETIC CONFIGURATION , 2009, 0906.2677.

[14]  A. Vourlidas,et al.  What Is the Nature of EUV Waves? First STEREO 3D Observations and Comparison with Theoretical Models , 2009, 0905.2189.

[15]  N. Lugaz,et al.  THE INTERNAL STRUCTURE OF CORONAL MASS EJECTIONS: ARE ALL REGULAR MAGNETIC CLOUDS FLUX ROPES? , 2009 .

[16]  N. Lugaz,et al.  Solar – Terrestrial Simulation in the STEREO Era: The 24 – 25 January 2007 Eruptions , 2009, 0902.2004.

[17]  N. Gopalswamy,et al.  EUV WAVE REFLECTION FROM A CORONAL HOLE , 2009, The Astrophysical Journal.

[18]  D. S. Bloomfield,et al.  The Kinematics of a Globally Propagating Disturbance in the Solar Corona , 2008, 0805.2023.

[19]  E. Christian,et al.  The STEREO Mission: An Introduction , 2008 .

[20]  T. Gombosi,et al.  Validation of a synoptic solar wind model , 2008 .

[21]  L. Burlaga,et al.  SECCHI Observations of the Sun’s Garden-Hose Density Spiral , 2008 .

[22]  Ilia I. Roussev,et al.  New Physical Insight on the Changes in Magnetic Topology during Coronal Mass Ejections: Case Studies for the 2002 April 21 and August 24 Events , 2007 .

[23]  J. Stenflo,et al.  Are “EIT Waves” Fast-Mode MHD Waves? , 2007, 0704.2828.

[24]  L. Driel-Gesztelyi,et al.  Coronal “Wave”: Magnetic Footprint of a Coronal Mass Ejection? , 2007 .

[25]  M. Velli,et al.  A Semiempirical Magnetohydrodynamical Model of the Solar Wind , 2007 .

[26]  David R. Chesney,et al.  Space Weather Modeling Framework: A new tool for the space science community , 2005, Journal of Geophysical Research.

[27]  A. Warmuth,et al.  First Soft X-Ray Observations of Global Coronal Waves with the GOES Solar X-Ray Imager , 2005 .

[28]  P. Chen,et al.  A Full View of EIT Waves , 2005 .

[29]  J. Linker,et al.  Calculating the Thermal Structure of Solar Active Regions in Three Dimensions , 2005 .

[30]  M. Aschwanden,et al.  The Coronal Heating Mechanism as Identified by Full-Sun Visualizations , 2004 .

[31]  F. Moreno-insertis,et al.  Emergence of magnetic flux from the convection zone into the corona , 2004 .

[32]  Jean-Pierre Wuelser,et al.  EUVI: the STEREO-SECCHI extreme ultraviolet imager , 2004, SPIE Optics + Photonics.

[33]  Silvano Fineschi,et al.  MAGRITTE: an instrument suite for the solar atmospheric imaging assembly (AIA) aboard the Solar Dynamics Observatory , 2004, SPIE Optics + Photonics.

[34]  T. Gombosi,et al.  Eruption of a Buoyantly Emerging Magnetic Flux Rope , 2003 .

[35]  A. Pevtsov,et al.  The Relationship Between X-Ray Radiance and Magnetic Flux , 2003 .

[36]  M. Velli,et al.  A Three-dimensional Model of the Solar Wind Incorporating Solar Magnetogram Observations , 2003 .

[37]  S. Wu,et al.  Evidence of EIT and Moreton Waves in Numerical Simulations , 2002 .

[38]  H. Aurass,et al.  X-ray observations of a large-scale solar coronal shock wave , 2002 .

[39]  S. Wu,et al.  Three‐dimensional numerical simulation of MHD waves observed by the Extreme Ultraviolet Imaging Telescope , 2001 .

[40]  C. J. Wolfson,et al.  Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) , 2000, SPIE Optics + Photonics.

[41]  Andreas Klassen,et al.  Catalogue of the 1997 SOHO–EIT coronal transient waves and associated type II radio burst spectra , 2000 .

[42]  Jean-Pierre Delaboudiniere,et al.  SOHO/EIT Observations of the 1997 April 7 Coronal Transient: Possible Evidence of Coronal Moreton Waves , 1999 .

[43]  S. Freeland,et al.  Data Analysis with the SolarSoft System , 1998 .

[44]  B. Au,et al.  Eit Observations of the Extreme Ultraviolet Sun , 1997 .

[45]  W. Neupert,et al.  EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission , 1995 .

[46]  M. Altschuler,et al.  High resolution mapping of the magnetic field of the solar corona , 1977 .

[47]  J. Linker,et al.  MULTISPECTRAL EMISSION OF THE SUN DURING THE FIRST WHOLE SUN MONTH: MAGNETOHYDRODYNAMIC SIMULATIONS , 2008 .

[48]  Peter R. Young,et al.  CHIANTI—An Atomic Database for Emission Lines. VII. New Data for X-Rays and Other Improvements , 2006 .

[49]  J. Linker,et al.  Including the Transition Region in Models of the Large-Scale Solar Corona , 2001 .