STUDYING EXTREME ULTRAVIOLET WAVE TRANSIENTS WITH A DIGITAL LABORATORY: DIRECT COMPARISON OF EXTREME ULTRAVIOLET WAVE OBSERVATIONS TO GLOBAL MAGNETOHYDRODYNAMIC SIMULATIONS
暂无分享,去创建一个
[1] A. Vourlidas,et al. Toward understanding the early stages of an impulsively accelerated coronal mass ejection - SECCHI observations , 2010, 1008.1171.
[2] G. Attrill. DISPELLING ILLUSIONS OF REFLECTION: A NEW ANALYSIS OF THE 2007 MAY 19 CORONAL “WAVE” EVENT , 2010 .
[3] L. Ofman,et al. GLOBAL SIMULATION OF AN EXTREME ULTRAVIOLET IMAGING TELESCOPE WAVE , 2010 .
[4] H. Q. Yang,et al. The Dependence of the EIT Wave Velocity on the Magnetic Field Strength , 2010, 1002.3955.
[5] J. Vial,et al. LARGE-SCALE EXTREME-ULTRAVIOLET DISTURBANCES ASSOCIATED WITH A LIMB CORONAL MASS EJECTION , 2010 .
[6] U. Michigan,et al. TOWARD A REALISTIC THERMODYNAMIC MAGNETOHYDRODYNAMIC MODEL OF THE GLOBAL SOLAR CORONA , 2009, 0912.2647.
[7] L. Golub,et al. A NEW VIEW OF CORONAL WAVES FROM STEREO , 2009 .
[8] G. Attrill,et al. EIT Waves: A Changing Understanding over a Solar Cycle , 2009 .
[9] Angelos Vourlidas,et al. FIRST MEASUREMENTS OF THE MASS OF CORONAL MASS EJECTIONS FROM THE EUV DIMMING OBSERVED WITH STEREO EUVI A+B SPACECRAFT , 2009 .
[10] P. Testa,et al. HINODE/XRT AND STEREO OBSERVATIONS OF A DIFFUSE CORONAL “WAVE”–CORONAL MASS EJECTION–DIMMING EVENT , 2009 .
[11] G. Attrill,et al. NUMERICAL SIMULATION OF AN EUV CORONAL WAVE BASED ON THE 2009 FEBRUARY 13 CME EVENT OBSERVED BY STEREO , 2009, 0909.3095.
[12] M. Aschwanden. 4-D modeling of CME expansion and EUV dimming observed with STEREO/EUVI , 2009, 0908.1913.
[13] Chengcai Shen,et al. NUMERICAL EXPERIMENTS OF WAVE-LIKE PHENOMENA CAUSED BY THE DISRUPTION OF AN UNSTABLE MAGNETIC CONFIGURATION , 2009, 0906.2677.
[14] A. Vourlidas,et al. What Is the Nature of EUV Waves? First STEREO 3D Observations and Comparison with Theoretical Models , 2009, 0905.2189.
[15] N. Lugaz,et al. THE INTERNAL STRUCTURE OF CORONAL MASS EJECTIONS: ARE ALL REGULAR MAGNETIC CLOUDS FLUX ROPES? , 2009 .
[16] N. Lugaz,et al. Solar – Terrestrial Simulation in the STEREO Era: The 24 – 25 January 2007 Eruptions , 2009, 0902.2004.
[17] N. Gopalswamy,et al. EUV WAVE REFLECTION FROM A CORONAL HOLE , 2009, The Astrophysical Journal.
[18] D. S. Bloomfield,et al. The Kinematics of a Globally Propagating Disturbance in the Solar Corona , 2008, 0805.2023.
[19] E. Christian,et al. The STEREO Mission: An Introduction , 2008 .
[20] T. Gombosi,et al. Validation of a synoptic solar wind model , 2008 .
[21] L. Burlaga,et al. SECCHI Observations of the Sun’s Garden-Hose Density Spiral , 2008 .
[22] Ilia I. Roussev,et al. New Physical Insight on the Changes in Magnetic Topology during Coronal Mass Ejections: Case Studies for the 2002 April 21 and August 24 Events , 2007 .
[23] J. Stenflo,et al. Are “EIT Waves” Fast-Mode MHD Waves? , 2007, 0704.2828.
[24] L. Driel-Gesztelyi,et al. Coronal “Wave”: Magnetic Footprint of a Coronal Mass Ejection? , 2007 .
[25] M. Velli,et al. A Semiempirical Magnetohydrodynamical Model of the Solar Wind , 2007 .
[26] David R. Chesney,et al. Space Weather Modeling Framework: A new tool for the space science community , 2005, Journal of Geophysical Research.
[27] A. Warmuth,et al. First Soft X-Ray Observations of Global Coronal Waves with the GOES Solar X-Ray Imager , 2005 .
[28] P. Chen,et al. A Full View of EIT Waves , 2005 .
[29] J. Linker,et al. Calculating the Thermal Structure of Solar Active Regions in Three Dimensions , 2005 .
[30] M. Aschwanden,et al. The Coronal Heating Mechanism as Identified by Full-Sun Visualizations , 2004 .
[31] F. Moreno-insertis,et al. Emergence of magnetic flux from the convection zone into the corona , 2004 .
[32] Jean-Pierre Wuelser,et al. EUVI: the STEREO-SECCHI extreme ultraviolet imager , 2004, SPIE Optics + Photonics.
[33] Silvano Fineschi,et al. MAGRITTE: an instrument suite for the solar atmospheric imaging assembly (AIA) aboard the Solar Dynamics Observatory , 2004, SPIE Optics + Photonics.
[34] T. Gombosi,et al. Eruption of a Buoyantly Emerging Magnetic Flux Rope , 2003 .
[35] A. Pevtsov,et al. The Relationship Between X-Ray Radiance and Magnetic Flux , 2003 .
[36] M. Velli,et al. A Three-dimensional Model of the Solar Wind Incorporating Solar Magnetogram Observations , 2003 .
[37] S. Wu,et al. Evidence of EIT and Moreton Waves in Numerical Simulations , 2002 .
[38] H. Aurass,et al. X-ray observations of a large-scale solar coronal shock wave , 2002 .
[39] S. Wu,et al. Three‐dimensional numerical simulation of MHD waves observed by the Extreme Ultraviolet Imaging Telescope , 2001 .
[40] C. J. Wolfson,et al. Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) , 2000, SPIE Optics + Photonics.
[41] Andreas Klassen,et al. Catalogue of the 1997 SOHO–EIT coronal transient waves and associated type II radio burst spectra , 2000 .
[42] Jean-Pierre Delaboudiniere,et al. SOHO/EIT Observations of the 1997 April 7 Coronal Transient: Possible Evidence of Coronal Moreton Waves , 1999 .
[43] S. Freeland,et al. Data Analysis with the SolarSoft System , 1998 .
[44] B. Au,et al. Eit Observations of the Extreme Ultraviolet Sun , 1997 .
[45] W. Neupert,et al. EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission , 1995 .
[46] M. Altschuler,et al. High resolution mapping of the magnetic field of the solar corona , 1977 .
[47] J. Linker,et al. MULTISPECTRAL EMISSION OF THE SUN DURING THE FIRST WHOLE SUN MONTH: MAGNETOHYDRODYNAMIC SIMULATIONS , 2008 .
[48] Peter R. Young,et al. CHIANTI—An Atomic Database for Emission Lines. VII. New Data for X-Rays and Other Improvements , 2006 .
[49] J. Linker,et al. Including the Transition Region in Models of the Large-Scale Solar Corona , 2001 .