Dissolution and gettering of iron during contact co-firing

[1]  D. Macdonald,et al.  Dissolution of metal precipitates in multicrystalline silicon during annealing and the protective effect of phosphorus emitters , 2007 .

[2]  A. Holt,et al.  Gettering of transition metal impurities during phosphorus emitter diffusion in multicrystalline silicon solar cell processing , 2006 .

[3]  D. Macdonald,et al.  HYDROGEN PASSIVATION OF IRON IN CRYSTALLINE SILICON , 2022 .

[4]  B. Lai,et al.  Engineering metal-impurity nanodefects for low-cost solar cells , 2005, Nature materials.

[5]  T. Buonassisi,et al.  Synchrotron-based microanalysis of iron distribution after thermal processing and predictive modeling of resulting solar cell efficiency , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[6]  D. Macdonald,et al.  Optimised gettering and hydrogenation of multi-crystalline silicon wafers for use in solar cells , 2007 .

[7]  Antonio Luque,et al.  Acceptable contamination levels in solar grade silicon: From feedstock to solar cell , 2009 .

[8]  T. Buonassisi,et al.  Impurity‐to‐efficiency simulator: predictive simulation of silicon solar cell performance based on iron content and distribution , 2011 .

[9]  A. Kaminski,et al.  Study of the composition of hydrogenated silicon nitride SiNx:H for efficient surface and bulk passivation of silicon , 2009 .

[10]  D. Macdonald,et al.  Iron detection in crystalline silicon by carrier lifetime measurements for arbitrary injection and doping , 2004 .

[11]  D. Borchert,et al.  Improvement of multicrystalline silicon solar cells by a low temperature anneal after emitter diffusion , 2011 .

[12]  V. Mihailetchi,et al.  Effect of iron in silicon feedstock on p- and n-type multicrystalline silicon solar cells , 2008 .