A SWIFT SURVEY OF ACCRETION ONTO STELLAR-MASS BLACK HOLES

We present a systemic analysis of all of the stellar-mass black hole binaries (confirmed and candidate) observed by the Swift observatory up to 2010 June. The broad Swift bandpass enables a trace of disk evolution over an unprecedented range in flux and temperature. The final data sample consists of 476 X-ray spectra containing greater than 100 counts, in the 0.6-10 keV band. This is the largest sample of high-quality CCD spectra of accreting black holes published to date. In addition, strictly simultaneous data at optical/UV wavelengths are available for 255 (54%) of these observations. The data are modeled with a combination of an accretion disk and a hard spectral component. For the hard component we consider both a simple power-law model and a thermal Comptonization model. An accretion disk is detected at greater than the 5σ confidence level in 61% of the observations. Light curves and color-color diagrams are constructed for each system. Hardness-luminosity and disk fraction-luminosity diagrams are constructed and are observed to be consistent with those typically observed by RXTE, noting the sensitivity below 2 keV provided by Swift. The observed spectra have an average luminosity of ~1% Eddington, though we are sensitive to accretion disks down to a luminosity of 10–3 L Edd. Thus, this is also the largest sample of such cool accretion disks studied to date. The accretion disk temperature distribution displays two peaks consistent with the classical hard and soft spectral states, with a smaller number of disks distributed between these. The distribution of inner disk radii is observed to be continuous regardless of which model is used to fit the hard continua. There is no evidence for large-scale truncation of the accretion disk in the hard state (at least for Lx 10–3 L Edd), with all of the accretion disks having radii 40 Rg . Plots of the accretion disk inner radius versus hardness ratio reveal the disk radius to be decreasing as the spectrum hardens, i.e., enters the hard state. This is in contrast to expectations from the standard disk truncation paradigm and points toward a contribution from spectral hardening. The availability of simultaneous X-ray and optical/UV data for a subset of observations facilitates a critical examination of the role of disk irradiation via a modified disk model with a variable emissivity profile (i.e., T(r)r –p ). The broadband spectra (X-ray-optical/UV) reveal irradiation of the accretion disk to be an important effect at all luminosities sampled herein, i.e., p 0.75 for luminosities 10–3 L Edd. The accretion disk is found to dominate the UV emission irrespective of the assumed hard spectral component. Overall, we find the broadband soft-state spectra to be consistent with an irradiated accretion disk plus a corona, but we are unable to make conclusive statements regarding the nature of the hard-state accretion flow (e.g., ADAF/corona versus jet). Finally, the Swift data reveal a relation between the flux emitted by the accretion disk and that emitted by the corona, for this sample of stellar-mass black holes, that is found to be in broad agreement with the observed disk-corona relationship in Seyfert galaxies, suggesting a scale invariant coupling between the accretion disk and the corona.

[1]  W. Lewin,et al.  Compact Stellar X-Ray Sources: Preface , 2006 .

[2]  S. Kitamoto,et al.  TIME-DEPENDENT DISK ACCRETION IN X-RAY NOVA MUSCAE 1991 , 1994 .

[3]  S. Markoff,et al.  Going with the Flow: Can the Base of Jets Subsume the Role of Compact Accretion Disk Coronae? , 2005, astro-ph/0509028.

[4]  W. N. Johnson,et al.  Gamma-Ray Spectral States of Galactic Black Hole Candidates , 1998 .

[5]  J.-M. Hameury,et al.  The disc instability model for X-ray transients: Evidence for truncation and irradiation , 2001, astro-ph/0102237.

[6]  Yasuo Tanaka,et al.  X-ray novae , 1996 .

[7]  J. Orosz,et al.  Optical Observations of GRO J1655–40 in Quiescence. I. A Precise Mass for the Black Hole Primary , 1996, astro-ph/9610211.

[8]  A transient large-scale relativistic radio jet from GX 339−4 , 2003, astro-ph/0311452.

[9]  Jon M. Miller,et al.  SUZAKU OBSERVATIONS OF 4U 1957+11: POTENTIALLY THE MOST RAPIDLY SPINNING BLACK HOLE IN (THE HALO OF) THE GALAXY , 2011, 1109.6008.

[10]  A. Merloni,et al.  A Global Study of the Behaviour of Black Hole X-ray Binary Discs , 2010, 1009.2599.

[11]  U. Cambridge,et al.  A Long, Hard Look at the Low/Hard State in Accreting Black Holes , 2006, astro-ph/0602633.

[12]  J. Rodriguez,et al.  The early phase of a H1743-322 outburst observed by INTEGRAL, RXTE, Swift, and XMM/Newton , 2009, 0901.0731.

[13]  P. A. Charles,et al.  Dynamical Evidence for a Black Hole in GX 339-4 , 2003 .

[14]  Radiation mechanisms and geometry of cygnus X-1 in the soft state , 1999, astro-ph/9905146.

[15]  Aya Kubota,et al.  The Nature of Ultraluminous Compact X-Ray Sources in Nearby Spiral Galaxies , 2000, astro-ph/0001009.

[16]  Sera Markoff,et al.  A jet model for the broadband spectrum of XTE J1118+480. Synchrotron emission from radio to X-rays in the , 2000, astro-ph/0010560.

[17]  H. Falcke,et al.  A scheme to unify low-power accreting black holes Jet-dominated accretion flows and the radio/X-ray correlation , 2003, astro-ph/0305335.

[18]  C. Done,et al.  A re-analysis of the iron line in the XMM–Newton data from the low/hard state in GX339−4 , 2009, 0911.3243.

[19]  Juri Poutanen,et al.  The Two-Phase Pair Corona Model for Active Galactic Nuclei and X-ray Binaries: How to Obtain Exact Solutions , 1996 .

[20]  F. Takahara,et al.  On the Spectral Hardening Factor of the X-Ray Emission from Accretion Disks in Black Hole Candidates , 1995 .

[21]  J. Thorstensen A 9.3 hour orbital period in the potential black hole binary 4U 1957 + 11 , 1987 .

[22]  F. Özel,et al.  The relation between optical extinction and hydrogen column density in the Galaxy , 2009 .

[23]  University of Cambridge,et al.  A Prominent Accretion Disk in the Low-Hard State of the Black Hole Candidate SWIFT J1753.5-0127 , 2006 .

[24]  W. Farr,et al.  MASS MEASUREMENTS OF BLACK HOLES IN X-RAY TRANSIENTS: IS THERE A MASS GAP? , 2012, 1205.1805.

[25]  M. Reid,et al.  THE MASS OF THE BLACK HOLE IN CYGNUS X-1 , 2011, 1106.3689.

[26]  Kazuhisa Mitsuda,et al.  Simultaneous X-ray and optical observations of GX 339-4 in an X-ray high state , 1986 .

[27]  S. C. Orbel,et al.  X-RAY OBSERVATIONS OF THE BLACK HOLE TRANSIENT 4 U 1630 – 47 DURING TWO YEARS OF X-RAY ACTIVITY , 2008 .

[28]  J. Tomsick,et al.  TRUNCATION OF THE INNER ACCRETION DISK AROUND A BLACK HOLE AT LOW LUMINOSITY , 2009, 0911.2240.

[29]  J. Greiner,et al.  An unusually massive stellar black hole in the Galaxy , 2001, Nature.

[30]  W. Cash,et al.  Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques , 1979 .

[31]  M. Reynolds,et al.  SUZAKU BROADBAND SPECTROSCOPY OF SWIFT J1753.5−0127 IN THE LOW-HARD STATE , 2009, 0911.3642.

[32]  A. Loeb,et al.  Stellar black holes at the dawn of the universe , 2011, 1102.1891.

[33]  Marat Gilfanov,et al.  Low-mass X-ray binaries as a stellar mass indicator for the host galaxy , 2004 .

[34]  M. J. Page,et al.  Further calibration of the Swift ultraviolet/optical telescope , 2010, 1004.2448.

[35]  D. McCammon,et al.  Photoelectric absorption cross sections with variable abundances , 1992 .

[36]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[37]  J. Orosz,et al.  Measuring the spins of accreting black holes , 2011, 1101.0811.

[39]  Cambridge,et al.  X‐ray reflection in accreting stellar‐mass black hole systems , 2007, 0709.0270.

[40]  J. Rodriguez,et al.  Detailed radio to soft γ-ray studies of the 2005 outburst of the new X-ray transient XTE J1818-245 , 2009, 0903.4714.

[41]  Mario Livio,et al.  The Properties of X-Ray and Optical Light Curves of X-Ray Novae , 1997 .

[42]  M. J. Page,et al.  Photometric calibration of the Swift ultraviolet/optical telescope , 2007, 0708.2259.

[43]  Giuseppina Fabbiano,et al.  Populations of X-Ray Sources in Galaxies , 2006 .

[44]  J. Lasota The disc instability model of dwarf novae and low-mass X-ray binary transients , 2001, astro-ph/0102072.

[45]  Nicolas Produit,et al.  IGR J17497-2821 : a new X-ray nova , 2007 .

[46]  K. Horne,et al.  The dim inner accretion disk of the quiescent black hole A0620-00 , 1995 .

[47]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[48]  R. Sunyaev,et al.  Luminosity function of faint Galactic sources in the Chandra bulge field , 2011, 1101.5883.

[49]  Aya Kubota,et al.  TESTING ACCRETION DISK STRUCTURE WITH SUZAKU DATA OF LMC X-3 , 2010, 1003.3350.

[50]  O. Blaes,et al.  Testing Accretion Disk Theory in Black Hole X-Ray Binaries , 2006, astro-ph/0602245.

[51]  A. Fabian,et al.  Determining the spin of two stellar‐mass black holes from disc reflection signatures , 2009, 0902.1745.

[52]  B. Savage,et al.  A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .

[53]  T. Belloni,et al.  A global spectral study of black hole X-ray binaries , 2009, 0912.0142.

[54]  J. M. Miller,et al.  Swift Observations of the Cooling Accretion Disk of XTE J1817-330 , 2007 .

[55]  M. Coriat,et al.  The infrared/X-ray correlation of GX 339−4: probing hard X-ray emission in accreting black holes , 2009, 0909.3283.

[56]  D. Steeghs,et al.  Multistate observations of the Galactic black hole XTE J1752-223: evidence for an intermediate black hole spin , 2010, 1009.1154.

[57]  A. M. Beloborodov Plasma Ejection from Magnetic Flares and the X-Ray Spectrum of Cygnus X-1 , 1999 .

[58]  NasaGsfc,et al.  On the Temperature Profile of Radiatively Efficient Geometrically Thin Disks in Black Hole Binaries with the ASCA GIS , 2005, astro-ph/0505338.

[59]  Jon M. Miller,et al.  SUZAKU OBSERVATIONS OF THE GALACTIC CENTER MICROQUASAR 1E 1740.7−2942 , 2010, 1005.1269.

[60]  D. Crampton,et al.  Optical and UV spectroscopy of the black hole binary candidate LMC X-1 , 1987 .

[61]  C. Motch,et al.  A 300-parsec-long jet-inflated bubble around a powerful microquasar in the galaxy NGC 7793 , 2010, Nature.

[62]  Aya Kubota,et al.  Modelling the behaviour of accretion flows in X-ray binaries , 2007, 0708.0148.

[63]  Aya Kubota,et al.  Suzaku Results on Cygnus X-1 in the Low/Hard State , 2008, 0801.3315.

[64]  M. J. Page,et al.  Combined long and short time-scale X-ray variability of NGC 4051 with RXTE and XMM-Newton , 2004 .

[65]  Hans Ritter,et al.  The light curves of soft X‐ray transients , 1988 .

[66]  A. J. Castro-Tirado,et al.  Identification of the donor in the X-ray binary GRS 1915+105 , 2001, astro-ph/0105467.

[67]  O. Blaes,et al.  Relativistic Accretion Disk Models of High-State Black Hole X-Ray Binary Spectra , 2004, astro-ph/0408590.

[68]  J. Tomsick,et al.  A Close Look at the State Transitions of Galactic Black Hole Transients during Outburst Decay , 2003, astro-ph/0309799.

[69]  U. Maryland,et al.  THE ANGULAR MOMENTA OF NEUTRON STARS AND BLACK HOLES AS A WINDOW ON SUPERNOVAE , 2011, 1102.1500.

[70]  T. Belloni The Jet Paradigm , 2010 .

[71]  J. Tomsick,et al.  The Galactic Black Hole Transient H1743-322 During Outburst Decay Connections Between Timing Noise, State Transitions, And Radio Emission , 2005, astro-ph/0512387.

[72]  E. Cackett,et al.  THE FUNDAMENTAL PLANE OF ACCRETION ONTO BLACK HOLES WITH DYNAMICAL MASSES , 2009, 0906.3285.

[73]  R. Sunyaev,et al.  The Milky Way in X-rays for an outside observer , 2001, astro-ph/0109239.

[74]  R. Narayan,et al.  THE BLACK HOLE MASS DISTRIBUTION IN THE GALAXY , 2010, 1006.2834.

[75]  Michael G. Akritas,et al.  A test for partial correlation with censored astronomical data , 1996 .

[76]  R. Sunyaev,et al.  CONTRIBUTION OF THE ACCRETION DISK, HOT CORONA, AND OBSCURING TORUS TO THE LUMINOSITY OF SEYFERT GALAXIES: INTEGRAL AND SPITZER OBSERVATIONS , 2012, 1208.1612.

[77]  A. Cowley,et al.  DETERMINATION OF THE OPTICAL COUNTERPART OF LMC X-1 , 1995 .

[78]  J. P. Huchra,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[79]  T. Maccarone,et al.  TESTING THE JET QUENCHING PARADIGM WITH AN ULTRADEEP OBSERVATION OF A STEADILY SOFT STATE BLACK HOLE , 2011, 1106.0723.

[80]  M. Durant,et al.  SWIFT J1753.5–0127: A Surprising Optical/X-Ray Cross-Correlation Function , 2008, 0806.2530.

[81]  Laura Ferrarese David Merritt A Fundamental Relation Between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[82]  S. Markoff,et al.  Evidence for a compact jet dominating the broad-band spectrum of the black hole accretor XTE J1550–564 , 2010, 1002.3729.

[83]  J. Orosz,et al.  AN IMPROVED DYNAMICAL MODEL FOR THE MICROQUASAR XTE J1550−564 , 2011, 1101.2499.

[84]  M. Gierliński,et al.  Black hole accretion discs: reality confronts theory , 2003, astro-ph/0307333.

[85]  S. Mineshige,et al.  Probing the Peculiar Behavior of GRS 1915$+$105 at Near-Eddington Luminosity , 2010, 1001.3906.

[86]  Sumner Starrfield,et al.  The early ultraviolet, optical, and radio evolution of the soft X-ray transient GRO J0422+32 , 1994 .

[87]  P. Giommi,et al.  Panchromatic study of GRB 060124: From precursor to afterglow , 2006, astro-ph/0602497.

[88]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[89]  T. Belloni,et al.  A Unified Model for Black Hole X-Ray Binary Jets? , 2004, astro-ph/0506469.

[90]  Wei Cui,et al.  To appear in The Astrophysical Journal Letters BLACK HOLE SPIN IN X-RAY BINARIES: OBSERVATIONAL CONSEQUENCES II , 1997 .

[91]  Marat Gilfanov,et al.  High mass x-ray binaries as a star formation rate indicator in distant galaxies , 2002 .

[92]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[93]  Marc Klein-Wolt,et al.  Correlated X-ray Spectral and Timing Behavior of the Black Hole Candidate , 2000 .

[94]  I. Mirabel,et al.  A superluminal source in the Galaxy , 1994, Nature.

[95]  A. Fabian,et al.  The effects of photoionization on X-ray reflection spectra in active galactic nuclei , 1993 .

[96]  J. Wilms,et al.  Absorption Of X-rays In The Interstellar Medium , 2000, astro-ph/0008425.

[97]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[98]  R. P. Fender,et al.  MERLIN observations of relativistic ejections from GRS 1915+105 , 1998, astro-ph/9812150.

[99]  U. Cambridge,et al.  ON NEUTRAL ABSORPTION AND SPECTRAL EVOLUTION IN X-RAY BINARIES , 2009, 0910.2877.

[100]  John Raymond,et al.  The magnetic nature of disk accretion onto black holes , 2006, Nature.

[101]  J. M. Miller,et al.  Relativistic X-Ray Lines from the Inner Accretion Disks Around Black Holes , 2007, 0705.0540.

[102]  A. Merloni,et al.  Coronal outflow dominated accretion discs: a new possibility for low-luminosity black holes? , 2002 .

[103]  A Fundamental plane of black hole activity , 2003, astro-ph/0305261.

[104]  H. Spruit,et al.  Correlated fast X-ray and optical variability in the black-hole candidate XTE J1118+480 , 2001, Nature.

[105]  Ronald A. Remillard,et al.  in Compact Stellar X - ray Sources , 2004 .

[106]  D. Walton,et al.  SUZAKU OBSERVATION OF THE BLACK HOLE CANDIDATE MAXI J1836–194 IN A HARD/INTERMEDIATE SPECTRAL STATE , 2011, 1111.6665.

[107]  A. Fabian,et al.  Rapid optical and X-ray timing observations of GX 339-4: Flux correlations at the onset of a low/hard state , 2008, 0807.1529.

[108]  K. Makishima,et al.  Evidence for a Black Hole in the X-Ray Transient GRS 1009-45 , 1998 .

[109]  H. Ritter,et al.  On the nature of the break in the X-ray luminosity function of low-mass X-ray binaries , 2011 .

[110]  P. Uttley,et al.  Accretion disc variability in the hard state of black hole X-ray binaries , 2009, 0905.0587.

[111]  The mass of x-ray Nova Scorpii 1994 GRO J1655-40 , 1999, astro-ph/9901334.

[112]  K. Pottschmidt,et al.  ON THE ROLE OF THE ACCRETION DISK IN BLACK HOLE DISK–JET CONNECTIONS , 2012, 1207.3752.

[113]  D. Crampton,et al.  Discovery of a massive unseen star in LMC X-3 , 1983 .

[114]  Charles D. Bailyn,et al.  A Black Hole in the Superluminal Source SAX J1819.3–2525 (V4641 Sgr) , 2000, astro-ph/0103045.

[115]  R. Narayan,et al.  Advection-Dominated Accretion and the Spectral States of Black Hole X-Ray Binaries: Application to Nova Muscae 1991 , 1997 .

[116]  B. A. Harmon,et al.  Radio and X-Ray Observations of the 1998 Outburst of the Recurrent X-Ray Transient 4U 1630–47 , 1999 .

[117]  Yasushi Fukazawa,et al.  Suzaku Discovery of Iron Absorption Lines in Outburst Spectra of the X-Ray Transient 4U 1630-472 , 2006, astro-ph/0610496.

[118]  R. M. Hjellming,et al.  Episodic ejection of relativistic jets by the X-ray transient GRO J1655 - 40 , 1995, Nature.

[119]  R. Narayan,et al.  Multitemperature Blackbody Spectrum of a Thin Accretion Disk around a Kerr Black Hole: Model Computations and Comparison with Observations , 2004, astro-ph/0411583.

[121]  A. Merloni,et al.  On the interpretation of the multicolour disc model for black hole candidates , 2000 .

[122]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[123]  Alexei V. Filippenko,et al.  On IC 10 X-1, the Most Massive Known Stellar-Mass Black Hole , 2008, 0802.2716.

[124]  Charles D. Bailyn,et al.  A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33 , 2007, Nature.

[125]  C. Done,et al.  Angular Momentum Transport in Accretion Disks and Its Implications for Spin Estimates in Black Hole Binaries , 2008, 0803.0584.

[126]  Lev Titarchuk,et al.  GENERALIZED COMPTONIZATION MODELS AND APPLICATION TO THE RECENT HIGH-ENERGY OBSERVATIONS , 1994 .

[127]  J. Munn,et al.  The USNO-B Catalog , 2002, astro-ph/0210694.

[128]  J. Tomsick,et al.  Broadband X-Ray Spectra of GX 339–4 and the Geometry of Accreting Black Holes in the Hard State , 2008, 0802.3357.

[129]  University of Cambridge,et al.  ON RELATIVISTIC DISK SPECTROSCOPY IN COMPACT OBJECTS WITH X-RAY CCD CAMERAS , 2010, 1009.4391.

[130]  M. Gierliński,et al.  Observing the effects of the event horizon in black holes , 2002, astro-ph/0211206.

[131]  A. Fabian,et al.  Black hole accretion discs in the canonical low‐hard state , 2009, 0911.1151.

[132]  M. Barkov,et al.  Direct wind accretion and jet launch in binary systems , 2011, 1109.5810.

[133]  Global optical/infrared-X-ray correlations in X-ray binaries: quantifying disc and jet contributions , 2006, astro-ph/0606721.

[134]  R. Narayan,et al.  THE CONSTANT INNER-DISK RADIUS OF LMC X-3: A BASIS FOR MEASURING BLACK HOLE SPIN , 2010, 1006.5729.

[135]  D. Walton,et al.  The similarity of broad iron lines in X-ray binaries and active galactic nuclei , 2012, 1202.5193.

[136]  D. Crampton,et al.  GX 339-4 - Black hole or neutron star X-ray binary , 1987 .

[137]  Spain.,et al.  NGC 300 X‐1 is a Wolf–Rayet/black hole binary★ , 2010, 1001.4616.

[138]  R. Narayan,et al.  A Simple Comptonization Model , 2008, 0810.1758.

[139]  N. Panagia,et al.  The Hubble Space Telescope observations of X-ray nova Muscae 1991 and its spectral evolution , 1992 .