Immunophenotypic characteristics of ZNF384 rearrangement compared with BCR‐ABL1, KMT2A rearrangement, and other adult B‐cell precursor acute lymphoblastic leukemia

ZNF384 rearrangement has been recently identified as a new subtype of B‐cell precursor acute lymphoblastic leukemia (BCP‐ALL). However, comprehensive studies clarifying immunophenotypic features and discriminating them from non‐ZNF384 in adult BCP‐ALL remain scarce to date.

[1]  B. George,et al.  Systematic application of fluorescence in situ hybridization and immunophenotype profile for the identification of ZNF384 gene rearrangements in B cell acute lymphoblastic leukemia , 2021, International journal of laboratory hematology.

[2]  Ya-Zhen Qin,et al.  The Prognostic Significance of ZNF384 Fusions in Adult Ph-Negative B-Cell Precursor Acute Lymphoblastic Leukemia: A Comprehensive Cohort Study From a Single Chinese Center , 2021, Frontiers in Oncology.

[3]  M. Loh,et al.  Clinical characteristics and outcomes of B-ALL with ZNF384 rearrangements: a retrospective analysis by the Ponte di Legno Childhood ALL Working Group , 2021, Leukemia.

[4]  Y. Jing,et al.  Detection of EP300-ZNF384 fusion in patients with acute lymphoblastic leukemia using RNA fusion gene panel sequencing , 2020, Annals of Hematology.

[5]  Y. Hayashi,et al.  Impact of immunophenotypic characteristics on genetic subgrouping in childhood acute lymphoblastic leukemia: Tokyo Children's Cancer Study Group (TCCSG) study L04‐16 , 2020, Genes, chromosomes & cancer.

[6]  Ya-Zhen Qin,et al.  The prognostic significance of Wilms’ tumor gene 1 (WT1) expression at diagnosis in adults with Ph-negative B cell precursor acute lymphoblastic leukemia , 2019, Annals of Hematology.

[7]  Ashley D. Hill,et al.  PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia , 2019, Nature Genetics.

[8]  J. Stuchly,et al.  Genomic landscape of pediatric B-other acute lymphoblastic leukemia in a consecutive European cohort , 2019, Haematologica.

[9]  C. Pui,et al.  Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases , 2018, Proceedings of the National Academy of Sciences.

[10]  Richard A. Moore,et al.  The genetic basis and cell of origin of mixed phenotype acute leukaemia , 2018, Nature.

[11]  S. Heatley,et al.  Pre-B acute lymphoblastic leukaemia recurrent fusion, EP300-ZNF384, is associated with a distinct gene expression , 2018, British Journal of Cancer.

[12]  C. Pui,et al.  Whole-transcriptome sequencing identifies a distinct subtype of acute lymphoblastic leukemia with predominant genomic abnormalities of EP300 and CREBBP , 2017, Genome research.

[13]  K. Okamura,et al.  ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype , 2017, Haematologica.

[14]  Guido Marcucci,et al.  Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia , 2016, Nature Communications.

[15]  M. Shago,et al.  Frequency and outcome of pediatric acute lymphoblastic leukemia with ZNF384 gene rearrangements including a novel translocation resulting in an ARID1B/ZNF384 gene fusion , 2016, Pediatric blood & cancer.

[16]  B. Johansson,et al.  Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic leukaemia , 2016, Nature Communications.

[17]  Cheng Cheng,et al.  Genomic Profiling of Adult and Pediatric B-cell Acute Lymphoblastic Leukemia , 2016, EBioMedicine.

[18]  Shinichi Morishita,et al.  Recurrent DUX4 fusions in B cell acute lymphoblastic leukemia of adolescents and young adults , 2016, Nature Genetics.

[19]  C. Mullighan,et al.  Acute Lymphoblastic Leukemia in Children. , 2015, The New England journal of medicine.

[20]  H. Sakamoto,et al.  A novel recurrent EP300–ZNF384 gene fusion in B-cell precursor acute lymphoblastic leukemia , 2015, Leukemia.

[21]  T. Fioretos,et al.  RNA-seq identifies clinically relevant fusion genes in leukemia including a novel MEF2D/CSF1R fusion responsive to imatinib , 2014, Leukemia.

[22]  Y. Hayashi,et al.  Significance of CD66c expression in childhood acute lymphoblastic leukemia. , 2014, Leukemia research.

[23]  Ryan D. Morin,et al.  Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. , 2012, Cancer cell.

[24]  H. Kantarjian,et al.  Prognostic significance of immunophenotypic and karyotypic features of Philadelphia positive B‐lymphoblastic leukemia in the era of tyrosine kinase inhibitors , 2011, Cancer.

[25]  G. Renaud,et al.  Challenges in the use of NG2 antigen as a marker to predict MLL rearrangements in multi-center studies. , 2011, Leukemia research.

[26]  A. Órfão,et al.  Immunophenotyping of acute leukemia and lymphoproliferative disorders: a consensus proposal of the European LeukemiaNet Work Package 10 , 2011, Leukemia.

[27]  G. Trøen,et al.  Identification of the TAF15-ZNF384 fusion gene in two new cases of acute lymphoblastic leukemia with a t(12;17)(p13;q12). , 2011, Cancer genetics.

[28]  E. Thiel,et al.  The MLL recombinome of adult CD10-negative B-cell precursor acute lymphoblastic leukemia: results from the GMALL study group. , 2009, Blood.

[29]  R. Foà,et al.  Absence of prognostic impact of CD13 and/or CD33 antigen expression in adult acute lymphoblastic leukemia. Results of the GIMEMA ALL 0496 trial. , 2007, Haematologica.

[30]  M. Pombo-de-Oliveira,et al.  Molecular cytogenetic findings of acute leukemia included in the Brazilian Collaborative Study Group of Infant acute leukemia , 2006, Pediatric blood & cancer.

[31]  P. Marynen,et al.  CIZ gene rearrangements in acute leukemia: report of a diagnostic FISH assay and clinical features of nine patients , 2005, Leukemia.

[32]  E. Thiel,et al.  Expression of the human homologue of rat NG2 in adult acute lymphoblastic leukemia: close association with MLL rearrangement and a CD10−/CD24−/CD65s+/CD15+ B-cell phenotype , 2003, Leukemia.

[33]  P. Marynen,et al.  Recurrent rearrangement of the Ewing's sarcoma gene, EWSR1, or its homologue, TAF15, with the transcription factor CIZ/NMP4 in acute leukemia. , 2002, Cancer research.

[34]  A. Órfão,et al.  Adult precursor B-ALL with BCR/ABL gene rearrangements displays a unique immunophenotype based on the pattern of CD10, CD34, CD13 and CD38 expression , 2001, Leukemia.

[35]  K. Saigo,et al.  Acute lymphoblastic leukemia accompanied by chromosomal abnormality of translocation (12;17). , 2001, Haematologia.

[36]  E. Paietta Proposals for the immunological classification of acute leukemias. , 1995, Leukemia.

[37]  A Orfao,et al.  Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). , 1995, Leukemia.

[38]  J. Shuster,et al.  Predictability of the t(1;19)(q23;p13) from surface antigen phenotype: implications for screening cases of childhood acute lymphoblastic leukemia for molecular analysis: a Pediatric Oncology Group study. , 1993, Blood.

[39]  R. Parmley,et al.  Pre-B cell leukemia associated with chromosome translocation 1;19. , 1984, Blood.