In-depth proteomic analysis of a mollusc shell: acid-soluble and acid-insoluble matrix of the limpet Lottia gigantea

[1]  Inna Dubchak,et al.  The Genome Portal of the Department of Energy Joint Genome Institute , 2011, Nucleic Acids Res..

[2]  O. Galzitskaya,et al.  Occurrence of disordered patterns and homorepeats in eukaryotic and bacterial proteomes. , 2012, Molecular bioSystems.

[3]  Norman E. Davey,et al.  Attributes of short linear motifs. , 2012, Molecular bioSystems.

[4]  H. Nagasawa,et al.  Identification and Characterisation of a Calcium Carbonate‐Binding Protein, Blue Mussel Shell Protein (BMSP), from the Nacreous Layer , 2011, Chembiochem : a European journal of chemical biology.

[5]  V. Smith Phylogeny of whey acidic protein (WAP) four-disulfide core proteins and their role in lower vertebrates and invertebrates. , 2011, Biochemical Society transactions.

[6]  S. Weiner,et al.  Formation of Aragonite Crystals in the Crossed Lamellar Microstructure of Limpet Shells , 2011 .

[7]  Kaoru Maeyama,et al.  Deep Sequencing of ESTs from Nacreous and Prismatic Layer Producing Tissues and a Screen for Novel Shell Formation-Related Genes in the Pearl Oyster , 2011, PloS one.

[8]  M. Mann,et al.  Quantitative, high-resolution proteomics for data-driven systems biology. , 2011, Annual review of biochemistry.

[9]  I. Zanella-Cléon,et al.  Molecular Evolution of Mollusc Shell Proteins: Insights from Proteomic Analysis of the Edible Mussel Mytilus , 2011, Journal of Molecular Evolution.

[10]  Benjamin Marie,et al.  Novel Proteins from the Calcifying Shell Matrix of the Pacific Oyster Crassostrea gigas , 2011, Marine Biotechnology.

[11]  Arul Marie,et al.  Coupling Proteomics and Transcriptomics for the Identification of Novel and Variant Forms of Mollusk Shell Proteins: A Study with P. margaritifera , 2011, Chembiochem : a European journal of chemical biology.

[12]  M. Mann,et al.  Andromeda: a peptide search engine integrated into the MaxQuant environment. , 2011, Journal of proteome research.

[13]  M. Fritz,et al.  Gastropod nacre: structure, properties and growth--biological, chemical and physical basics. , 2011, Biophysical chemistry.

[14]  Benjamin Marie,et al.  Proteomic Identification of Novel Proteins from the Calcifying Shell Matrix of the Manila Clam Venerupis Philippinarum , 2011, Marine Biotechnology.

[15]  Benjamin Marie,et al.  Proteomic analysis of the organic matrix of the abalone Haliotis asinina calcified shell , 2010, Proteome Science.

[16]  Benjamin Marie,et al.  Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization , 2010, BMC Genomics.

[17]  Benjamin Marie,et al.  Proteomic Analysis of the Acid‐Soluble Nacre Matrix of the Bivalve Unio pictorum: Detection of Novel Carbonic Anhydrase and Putative Protease Inhibitor Proteins , 2010, Chembiochem : a European journal of chemical biology.

[18]  J. Evans,et al.  Intrinsically disordered mollusk shell prismatic protein that modulates calcium carbonate crystal growth. , 2010, Biomacromolecules.

[19]  J. Evans,et al.  The N- and C-terminal regions of the pearl-associated EF hand protein, PFMG1, promote the formation of the aragonite polymorph in vitro , 2010 .

[20]  K. Saruwatari,et al.  Characterization of the multilayered shell of a limpet, Lottia kogamogai (Mollusca: Patellogastropoda), using SEM-EBSD and FIB-TEM techniques. , 2010, Journal of structural biology.

[21]  A. Poustka,et al.  Proteomic analysis of sea urchin (Strongylocentrotus purpuratus) spicule matrix , 2010, Proteome Science.

[22]  Michael Kube,et al.  Parallel evolution of nacre building gene sets in molluscs. , 2010, Molecular biology and evolution.

[23]  J. Evans,et al.  Matrix Interactions in Biomineralization: Aragonite Nucleation by an Intrinsically Disordered Nacre Polypeptide, n16N, Associated with a β-Chitin Substrate , 2010 .

[24]  W. Lehmann,et al.  De novo sequencing of peptides by MS/MS , 2010, Proteomics.

[25]  M. Dunn PROTEOMICS: Ten years in the field , 2010, Proteomics.

[26]  Yilin Hu,et al.  Calcineurin Plays an Important Role in the Shell Formation of Pearl Oyster (Pinctada fucata) , 2010, Marine Biotechnology.

[27]  Matthias Mann,et al.  A Dual Pressure Linear Ion Trap Orbitrap Instrument with Very High Sequencing Speed* , 2009, Molecular & Cellular Proteomics.

[28]  Takashi Kato,et al.  An Acidic Matrix Protein, Pif, Is a Key Macromolecule for Nacre Formation , 2009, Science.

[29]  B. Marie,et al.  Evolution of Nacre: Biochemistry and Proteomics of the Shell Organic Matrix of the Cephalopod Nautilus macromphalus , 2009, Chembiochem : a European journal of chemical biology.

[30]  Yilin Hu,et al.  Cloning, characterization and immunolocalization of two subunits of calcineurin from pearl oyster (Pinctada fucata). , 2009, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[31]  J. Evans,et al.  Polyelectrolyte domains and intrinsic disorder within the prismatic Asprich protein family. , 2009, Biochemistry.

[32]  J. Evans,et al.  AP7, a partially disordered pseudo C-RING protein, is capable of forming stabilized aragonite in vitro. , 2009, Biochemistry.

[33]  Jürgen Cox,et al.  A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics , 2009, Nature Protocols.

[34]  M. Mann,et al.  In-depth, high-accuracy proteomics of sea urchin tooth organic matrix , 2008 .

[35]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[36]  John Spencer Evans,et al.  "Tuning in" to mollusk shell nacre- and prismatic-associated protein terminal sequences. Implications for biomineralization and the construction of high performance inorganic-organic composites. , 2008, Chemical reviews.

[37]  M. Mann,et al.  The sea urchin (Strongylocentrotus purpuratus) test and spine proteomes , 2008, Proteome Science.

[38]  R. Reinhardt,et al.  Increasing genomic information in bivalves through new EST collections in four species: development of new genetic markers for environmental studies and genome evolution. , 2008, Gene.

[39]  Michiko Norizuki,et al.  Distribution and Function of the Nacrein-Related Proteins Inferred from Structural Analysis , 2008, Marine Biotechnology.

[40]  I. Weiss,et al.  The structure of mollusc larval shells formed in the presence of the chitin synthase inhibitor Nikkomycin Z , 2007, BMC Structural Biology.

[41]  H. Nagasawa,et al.  Identification of Chitin in the Prismatic Layer of the Shell and a Chitin Synthase Gene from the Japanese Pearl Oyster, Pinctada fucata , 2007, Bioscience, biotechnology, and biochemistry.

[42]  Arul Marie,et al.  Proteomics Analysis of the Nacre Soluble and Insoluble Proteins from the Oyster Pinctada margaritifera , 2007, Marine Biotechnology.

[43]  A. George,et al.  Dentin Matrix Protein 4, a Novel Secretory Calcium-binding Protein That Modulates Odontoblast Differentiation* , 2007, Journal of Biological Chemistry.

[44]  Masato Yano,et al.  Tyrosinase localization in mollusc shells. , 2007, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[45]  M. Mann,et al.  In-gel digestion for mass spectrometric characterization of proteins and proteomes , 2006, Nature Protocols.

[46]  M. Mann,et al.  Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips , 2007, Nature Protocols.

[47]  G. Lanfranchi,et al.  Development of mussel mRNA profiling: Can gene expression trends reveal coastal water pollution? , 2006, Mutation research.

[48]  Gert Wörheide,et al.  A rapidly evolving secretome builds and patterns a sea shell , 2006, BMC Biology.

[49]  M. Fritz,et al.  Perlwapin, an abalone nacre protein with three four-disulfide core (whey acidic protein) domains, inhibits the growth of calcium carbonate crystals. , 2006, Biophysical journal.

[50]  Jesper V Olsen,et al.  Proteomic analysis of the acid‐soluble organic matrix of the chicken calcified eggshell layer , 2006, Proteomics.

[51]  Masato Yano,et al.  Shematrin: a family of glycine-rich structural proteins in the shell of the pearl oyster Pinctada fucata. , 2006, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[52]  Cen Zhang,et al.  A novel putative tyrosinase involved in periostracum formation from the pearl oyster (Pinctada fucata). , 2006, Biochemical and biophysical research communications.

[53]  I. Weiss,et al.  The distribution of chitin in larval shells of the bivalve mollusk Mytilus galloprovincialis. , 2006, Journal of structural biology.

[54]  C. Coustau,et al.  Compatibility in the Biomphalaria glabrata/Echinostoma caproni model: potential involvement of adhesion genes. , 2006, International journal for parasitology.

[55]  Steve Weiner,et al.  Mollusk shell formation: a source of new concepts for understanding biomineralization processes. , 2006, Chemistry.

[56]  S. Chiba,et al.  Molecular Evolution and Functionally Important Structures of Molluscan Dermatopontin: Implications for the Origins of Molluscan Shell Matrix Proteins , 2006, Journal of Molecular Evolution.

[57]  M. Mann,et al.  Exponentially Modified Protein Abundance Index (emPAI) for Estimation of Absolute Protein Amount in Proteomics by the Number of Sequenced Peptides per Protein*S , 2005, Molecular & Cellular Proteomics.

[58]  S. Weiner,et al.  Asprich: A Novel Aspartic Acid‐Rich Protein Family from the Prismatic Shell Matrix of the Bivalve Atrina rigida , 2005, Chembiochem : a European journal of chemical biology.

[59]  M. Mann,et al.  The abc's (and xyz's) of peptide sequencing , 2004, Nature Reviews Molecular Cell Biology.

[60]  I. Sarashina,et al.  Structure and expression of an unusually acidic matrix protein of pearl oyster shells. , 2004, Biochemical and biophysical research communications.

[61]  J. Marxen,et al.  The major soluble 19.6 kDa protein of the organic shell matrix of the freshwater snail Biomphalaria glabrata is an N-glycosylated dermatopontin. , 2003, Biochimica et biophysica acta.

[62]  T. Miyashita,et al.  Similarities in the structure of nacrein, the shell-matrix protein, in a bivalve and a gastropod , 2003 .

[63]  R. Takagi,et al.  Identical carbonic anhydrase contributes to nacreous or prismatic layer formation in Pinctada fucata (Mollusca : Bivalvia) , 2002 .

[64]  M. Fritz,et al.  Perlustrin, a Haliotis laevigata (abalone) nacre protein, is homologous to the insulin-like growth factor binding protein N-terminal module of vertebrates. , 2001, Biochemical and biophysical research communications.

[65]  D. Sane,et al.  Arterial calcification: A review of mechanisms, animal models, and the prospects for therapy , 2001, Medicinal research reviews.

[66]  S. Weiner,et al.  Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. , 2001, Journal of structural biology.

[67]  M. Fritz,et al.  The amino-acid sequence of the abalone (Haliotis laevigata) nacre protein perlucin. Detection of a functional C-type lectin domain with galactose/mannose specificity. , 2000, European journal of biochemistry.

[68]  S. Tsuda,et al.  Chitin-binding Proteins in Invertebrates and Plants Comprise a Common Chitin-binding Structural Motif* , 2000, The Journal of Biological Chemistry.

[69]  M. Fritz,et al.  Purification and characterization of perlucin and perlustrin, two new proteins from the shell of the mollusc Haliotis laevigata. , 2000, Biochemical and biophysical research communications.

[70]  Zhicheng Shen,et al.  Evolution of Chitin-Binding Proteins in Invertebrates , 1999, Journal of Molecular Evolution.

[71]  I. SlnasurNA,et al.  Primary structure of a soluble matrix protein of scallop shell: Implications for calcium carbonate biomineralization , 1998 .

[72]  P. Hansma,et al.  Molecular Cloning and Characterization of Lustrin A, a Matrix Protein from Shell and Pearl Nacre of Haliotis rufescens * , 1997, The Journal of Biological Chemistry.

[73]  T Morita,et al.  A carbonic anhydrase from the nacreous layer in oyster pearls. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[74]  R. Timpl,et al.  Cloning and complete amino acid sequences of human and murine basement membrane protein BM‐40 (SPARC, osteonectin) , 1988, FEBS letters.

[75]  R. Timpl,et al.  Solubilization of protein BM‐40 from a basement membrane tumor with cheating agents and evidence for its identity with osteonectin and SPARC , 1987, FEBS letters.

[76]  P. Bornstein,et al.  Characterization of a novel serum albumin-binding glycoprotein secreted by endothelial cells in culture. , 1984, The Journal of biological chemistry.

[77]  H. Kleinman,et al.  Osteonectin, a bone-specific protein linking mineral to collagen , 1981, Cell.

[78]  W. Peters Occurrence of chitin in mollusca , 1972 .