Influence of water activity and temperature on growth and production of trichothecenes by Fusarium graminearum sensu stricto and related species in maize grains.

[1]  S. Chulze,et al.  Effect of water activity and temperature on growth and trichothecene production by Fusarium meridionale. , 2018, International journal of food microbiology.

[2]  M. Gryzenhout,et al.  First report of Fusarium boothii from pecan (Carya illinoinensis) and camel thorn (Vachellia erioloba) trees in South Africa , 2016 .

[3]  S. Reznikov,et al.  Incidencia de Fusarium verticilloides y Fusarium graminearum en granos de híbridos comerciales de maíz, cosechados en la campaña 2011/2012 en seis localidades de las provincias de Tucumán y Salta , 2013 .

[4]  Modelling the growth of Fusarium graminearum on barley and wheat media extract , 2013 .

[5]  K. O’Donnell,et al.  Systematics, Phylogeny and Trichothecene Mycotoxin Potential of Fusarium Head Blight Cereal Pathogens , 2012 .

[6]  N. Magan,et al.  Relationship between environmental factors, dry matter loss and mycotoxin levels in stored wheat and maize infected with Fusarium species , 2012, Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment.

[7]  E. D. Del Ponte,et al.  Phenotypic and pathogenic traits of two species of the Fusarium graminearum complex possessing either 15-ADON or NIV genotype , 2012, European Journal of Plant Pathology.

[8]  A. Logrieco,et al.  Genetic Diversity in Fusarium graminearum from a Major Wheat-Producing Region of Argentina , 2011, Toxins.

[9]  N. Magan,et al.  Temperature and water activity effects on production of T-2 and HT-2 by Fusarium langsethiae strains from north European countries. , 2011, Food microbiology.

[10]  L. D. Ploper,et al.  Species diversity and toxigenic potential of Fusarium graminearum complex isolates from maize fields in northwest Argentina. , 2011, International journal of food microbiology.

[11]  N. Magan,et al.  Modelling the relationship between environmental factors, transcriptional genes and deoxynivalenol mycotoxin production by strains of two Fusarium species , 2011, Journal of The Royal Society Interface.

[12]  J. Pestka Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. , 2010 .

[13]  L. Severino,et al.  Effects of four Fusarium toxins (fumonisin B(1), alpha-zearalenol, nivalenol and deoxynivalenol) on porcine whole-blood cellular proliferation. , 2008, Toxicon : official journal of the International Society on Toxinology.

[14]  D. Geiser,et al.  An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. , 2008, Fungal genetics and biology : FG & B.

[15]  G. Vaamonde,et al.  Influence of water activity on deoxynivalenol accumulation in wheat , 1999, Mycotoxin Research.

[16]  N. Magan,et al.  Temperature and water activity effects on growth and temporal deoxynivalenol production by two Argentinean strains of Fusarium graminearum on irradiated wheat grain. , 2006, International journal of food microbiology.

[17]  D Aldred,et al.  Comparison of environmental profiles for growth and deoxynivalenol production by Fusarium culmorum and F. graminearum on wheat grain , 2005, Letters in applied microbiology.

[18]  M. Jiménez,et al.  Influence of environmental factors on the biosynthesis of type B trichothecenes by isolates of Fusarium spp. from Spanish crops. , 2004, International journal of food microbiology.

[19]  H. M. Martins,et al.  Influence of water activity, temperature and incubation time on the simultaneous production of deoxynivalenol and zearalenone in corn (Zea mays) by Fusarium graminearum , 2002 .

[20]  K. O’Donnell,et al.  Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. Miller,et al.  Trichothecene chemotypes of three Fusarium species , 1991 .

[22]  J. Pestka,et al.  Relation of 8-ketotrichothecene and zearalenone analog structure to inhibition of mitogen-induced human lymphocyte blastogenesis , 1985, Applied and environmental microbiology.

[23]  D. Demarini,et al.  Production of vomitoxin on corn by Fusarium graminearum NRRL 5883 and Fusarium roseum NRRL 6101 , 1982, Applied and environmental microbiology.