Single rodent mesohabenular axons release glutamate and GABA

The lateral habenula (LHb) is involved in reward, aversion, addiction and depression through descending interactions with several brain structures, including the ventral tegmental area (VTA). The VTA provides reciprocal inputs to LHb, but their actions are unclear. Here we show that the majority of rat and mouse VTA neurons innervating LHb coexpress markers for both glutamate signaling (vesicular glutamate transporter 2; VGluT2) and GABA signaling (glutamic acid decarboxylase; GAD, and vesicular GABA transporter; VGaT). A single axon from these mesohabenular neurons coexpresses VGluT2 protein and VGaT protein and, surprisingly, establishes symmetric and asymmetric synapses on LHb neurons. In LHb slices, light activation of mesohabenular fibers expressing channelrhodopsin2 driven by VGluT2 (Slc17a6) or VGaT (Slc32a1) promoters elicits release of both glutamate and GABA onto single LHb neurons. In vivo light activation of mesohabenular terminals inhibits or excites LHb neurons. Our findings reveal an unanticipated type of VTA neuron that cotransmits glutamate and GABA and provides the majority of mesohabenular inputs.

[1]  V. Tennyson The Fine Structure of the Nervous System. , 1970 .

[2]  E. Gray,et al.  The Fine Structure of the Nervous System , 1971 .

[3]  B. Meldrum GABA , 1977, Nature.

[4]  L. Swanson,et al.  The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat , 1982, Brain Research Bulletin.

[5]  O. Lindvall,et al.  Origin, course and termination of the mesohabenular dopamine pathway in the rat , 1984, Brain Research.

[6]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[7]  S. Palay,et al.  The morphology of synapses , 1996, Journal of neurocytology.

[8]  Masahiko Watanabe,et al.  Selective scarcity of NMDA receptor channel subunits in the stratum lucidum (mossy fibre‐recipient layer) of the mouse hippocampal CA3 subfield , 1998, The European journal of neuroscience.

[9]  S. Haber,et al.  Dopamine Neurons Make Glutamatergic Synapses In Vitro , 1998, The Journal of Neuroscience.

[10]  Masahiko Watanabe,et al.  Subtype switching of vesicular glutamate transporters at parallel fibre–Purkinje cell synapses in developing mouse cerebellum , 2003, The European journal of neuroscience.

[11]  C. Pycock,et al.  Dopamine neurones of the ventral tegmentum project to both medial and lateral habenula , 2004, Experimental Brain Research.

[12]  Grégory Dal Bo,et al.  Dopamine neurons in culture express VGLUT2 explaining their capacity to release glutamate at synapses in addition to dopamine , 2004, Journal of neurochemistry.

[13]  O. Hikosaka,et al.  Lateral habenula as a source of negative reward signals in dopamine neurons , 2007, Nature.

[14]  R. Veh,et al.  Dopaminergic projections from the VTA substantially contribute to the mesohabenular pathway in the rat , 2007, Neuroscience Letters.

[15]  M. Morales,et al.  Glutamatergic neurons are present in the rat ventral tegmental area , 2007, The European journal of neuroscience.

[16]  M. Morales,et al.  Synapses between corticotropin‐releasing factor‐containing axon terminals and dopaminergic neurons in the ventral tegmental area are predominantly glutamatergic , 2008, The Journal of comparative neurology.

[17]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[18]  J. Storm-Mathisen,et al.  Vesicular glutamate and GABA transporters sort to distinct sets of vesicles in a population of presynaptic terminals. , 2009, Cerebral cortex.

[19]  Mark G. Baxter,et al.  The Rostromedial Tegmental Nucleus (RMTg), a GABAergic Afferent to Midbrain Dopamine Neurons, Encodes Aversive Stimuli and Inhibits Motor Responses , 2009, Neuron.

[20]  G. Yadid,et al.  Electrical stimulation of the lateral habenula produces enduring inhibitory effect on cocaine seeking behavior , 2010, Neuropharmacology.

[21]  Simon Hong,et al.  A pallidus-habenula-dopamine pathway signals inferred stimulus values. , 2010, Journal of neurophysiology.

[22]  Ethan S. Bromberg-Martin,et al.  Distinct Tonic and Phasic Anticipatory Activity in Lateral Habenula and Dopamine Neurons , 2010, Neuron.

[23]  Elyssa B. Margolis,et al.  Glutamatergic and Nonglutamatergic Neurons of the Ventral Tegmental Area Establish Local Synaptic Contacts with Dopaminergic and Nondopaminergic Neurons , 2010, The Journal of Neuroscience.

[24]  Arto V. Nurmikko,et al.  Pathway-Specific Feedforward Circuits between Thalamus and Neocortex Revealed by Selective Optical Stimulation of Axons , 2010, Neuron.

[25]  Jessica A. Cardin,et al.  Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2 , 2010, Nature Protocols.

[26]  Christophe D. Proulx,et al.  Synaptic potentiation onto habenula neurons in learned helplessness model of depression , 2010, Nature.

[27]  Masahiko Watanabe,et al.  Developmental Switching of Perisomatic Innervation from Climbing Fibers to Basket Cell Fibers in Cerebellar Purkinje Cells , 2011, The Journal of Neuroscience.

[28]  Simon Hong,et al.  Negative Reward Signals from the Lateral Habenula to Dopamine Neurons Are Mediated by Rostromedial Tegmental Nucleus in Primates , 2011, The Journal of Neuroscience.

[29]  M. Morales,et al.  Mesocorticolimbic Glutamatergic Pathway , 2011, The Journal of Neuroscience.

[30]  R. Veh,et al.  Morphological and electrophysiological characteristics of neurons within identified subnuclei of the lateral habenula in rat brain slices , 2011, Neuroscience.

[31]  Anne E Carpenter,et al.  Neuron-type specific signals for reward and punishment in the ventral tegmental area , 2011, Nature.

[32]  B. Sabatini,et al.  Dopaminergic neurons inhibit striatal output via non-canonical release of GABA , 2012, Nature.

[33]  Kelly R. Tan,et al.  GABA Neurons of the VTA Drive Conditioned Place Aversion , 2012, Neuron.

[34]  Heterogeneous composition of dopamine neurons of the rat A10 region: molecular evidence for diverse signaling properties , 2013, Brain Structure and Function.

[35]  K. Deisseroth,et al.  Input-specific control of reward and aversion in the ventral tegmental area , 2012, Nature.

[36]  M. Mameli,et al.  Cocaine Evokes Projection-Specific Synaptic Plasticity of Lateral Habenula Neurons , 2012, The Journal of Neuroscience.

[37]  Alice M Stamatakis,et al.  Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance , 2012, Nature Neuroscience.

[38]  D. Mendelowitz,et al.  Optogenetic approaches to characterize the long-range synaptic pathways from the hypothalamus to brain stem autonomic nuclei , 2012, Journal of Neuroscience Methods.

[39]  H. Fields,et al.  Ventral Tegmental Area Glutamate Neurons: Electrophysiological Properties and Projections , 2012, The Journal of Neuroscience.

[40]  Christophe D. Proulx,et al.  Input to the Lateral Habenula from the Basal Ganglia Is Excitatory, Aversive, and Suppressed by Serotonin , 2012, Neuron.

[41]  G. Johnston,et al.  Advantages of an antagonist: bicuculline and other GABA antagonists , 2013, British journal of pharmacology.

[42]  Aaron S. Andalman,et al.  Dopamine neurons modulate neural encoding and expression of depression-related behaviour , 2012, Nature.

[43]  K. Deisseroth,et al.  Rapid regulation of depression-related behaviors by control of midbrain dopamine neurons , 2012, Nature.

[44]  Karl Deisseroth,et al.  A Unique Population of Ventral Tegmental Area Neurons Inhibits the Lateral Habenula to Promote Reward , 2013, Neuron.

[45]  S. Ikemoto,et al.  Cocaine Drives Aversive Conditioning via Delayed Activation of Dopamine-Responsive Habenular and Midbrain Pathways , 2013, The Journal of Neuroscience.

[46]  R. Gutiérrez,et al.  Mixed neurotransmission in the hippocampal mossy fibers , 2013, Front. Cell. Neurosci..

[47]  R. Edwards,et al.  Multiple Dileucine-like Motifs Direct VGLUT1 Trafficking , 2013, The Journal of Neuroscience.

[48]  J. Neumaier,et al.  DREADDing the lateral habenula: A review of methodological approaches for studying lateral habenula function , 2013, Brain Research.

[49]  M. Picciotto,et al.  GABAergic and glutamatergic efferents of the mouse ventral tegmental area , 2014, The Journal of comparative neurology.

[50]  D. H. Root,et al.  Glutamate neurons within the midbrain dopamine regions , 2014, Neuroscience.