Metamaterials and Metasurfaces for Sensor Applications

Electromagnetic metamaterials (MMs) and metasurfaces (MSs) are artificial media and surfaces with subwavelength separations of meta-atoms designed for anomalous manipulations of light properties. Owing to large scattering cross-sections of metallic/dielectric meta-atoms, it is possible to not only localize strong electromagnetic fields in deep subwavelength volume but also decompose and analyze incident light signal with ultracompact setup using MMs and MSs. Hence, by probing resonant spectral responses from extremely boosted interactions between analyte layer and optical MMs or MSs, sensing the variation of refractive index has been a popular and practical application in the field of photonics. Moreover, decomposing and analyzing incident light signal can be easily achieved with anisotropic MSs, which can scatter light to different directions according to its polarization or wavelength. In this paper, we present recent advances and potential applications of optical MMs and MSs for refractive index sensing and sensing light properties, which can be easily integrated with various electronic devices. The characteristics and performances of devices are summarized and compared qualitatively with suggestions of design guidelines.

[1]  Hongsheng Chen,et al.  Electromagnetic wave interactions with a metamaterial cloak. , 2007, Physical review letters.

[2]  Byoungho Lee,et al.  Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors , 2011, Sensors.

[3]  David R. Smith,et al.  Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. , 2008, Nano letters.

[4]  Vladimir M. Shalaev,et al.  Ultra-thin, planar, Babinet-inverted plasmonic metalenses , 2013, Light: Science & Applications.

[5]  Sergey I. Bozhevolnyi,et al.  Beam-Size-Invariant Spectropolarimeters Using Gap-Plasmon Metasurfaces , 2017, 1704.08915.

[6]  Franz Faupel,et al.  Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials , 2011, Advanced materials.

[7]  Erez Hasman,et al.  Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. , 2002, Optics letters.

[8]  Ran Duan,et al.  Sensing Based on Fano-Type Resonance Response of All-Dielectric Metamaterials , 2015, Sensors.

[9]  M. Wegener,et al.  Negative Refractive Index at Optical Wavelengths , 2007, Science.

[10]  J. Hao,et al.  Nearly total absorption of light and heat generation by plasmonic metamaterials , 2011 .

[11]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[12]  I. Al-Naib,et al.  Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces , 2014, 1406.7194.

[13]  Min Gu,et al.  Miniature chiral beamsplitter based on gyroid photonic crystals , 2013, Nature Photonics.

[14]  Thomas A. Germer,et al.  Remote Sensing of Chiral Signatures on Mars , 2012, 1209.0671.

[15]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[16]  S. Pancharatnam,et al.  Generalized theory of interference, and its applications , 1956 .

[17]  J. Pendry A Chiral Route to Negative Refraction , 2004, Science.

[18]  S. Ramakrishna,et al.  Resonant enhancement of Raman scattering in metamaterials with hybrid electromagnetic and plasmonic resonances , 2016, Journal of Optics.

[19]  Peter Nordlander,et al.  Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. , 2011, Nano letters.

[20]  V. Weisskopf,et al.  Effects of Configuration Interaction on Intensities and Phase Shifts , 2001 .

[21]  I. Al-Naib,et al.  Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials. , 2012, Optics letters.

[22]  Gennady Shvets,et al.  Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. , 2012, Nature materials.

[23]  Scalable Fabrication of Composite Ti/Ag Plasmonic Helices: Controlling Morphology and Optical Activity by Tailoring Material Properties , 2014 .

[24]  Pei-Kuen Wei,et al.  Ultrasensitive Biosensors Using Enhanced Fano Resonances in Capped Gold Nanoslit Arrays , 2015, Scientific Reports.

[25]  D. Sanvitto,et al.  Three Dimensional Chiral Metamaterial Nanospirals in the Visible Range by Vertically Compensated Focused Ion Beam Induced‐Deposition , 2014 .

[26]  Ximing Ren,et al.  Metasurface for characterization of the polarization state of light. , 2015, Optics express.

[27]  F Schmidt,et al.  Magnetic metamaterials at telecommunication and visible frequencies. , 2005, Physical review letters.

[28]  C. Mirkin,et al.  Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. , 2006, Nano letters.

[29]  Steven G. Johnson,et al.  All-angle negative refraction without negative effective index , 2002 .

[30]  M. Wegener,et al.  A Helical Metamaterial for Broadband Circular Polarization Conversion , 2015 .

[31]  Yasin Ekinci,et al.  Symmetry breaking in a plasmonic metamaterial at optical wavelength. , 2008, Nano letters.

[32]  J. Popp,et al.  Surface-enhanced Raman spectroscopy , 2009, Analytical and bioanalytical chemistry.

[33]  Lei Zhang,et al.  Broadband Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial at Visible Frequencies , 2014, Scientific Reports.

[34]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[35]  D. L. Jeanmaire,et al.  Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode , 1977 .

[36]  Wei Ting Chen,et al.  Super-Dispersive Off-Axis Meta-Lenses for Compact High Resolution Spectroscopy. , 2016, Nano letters.

[37]  Yoav Y. Schechner,et al.  Active Polarization Descattering , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  E. Narimanov,et al.  Hyperbolic metamaterials , 2013, 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR).

[39]  Byoungho Lee,et al.  Broadband ultrathin circular polarizer at visible and near-infrared wavelengths using a non-resonant characteristic in helically stacked nano-gratings. , 2017, Optics express.

[40]  Xiangao Zhang,et al.  High Quality Plasmonic Sensors Based on Fano Resonances Created through Cascading Double Asymmetric Cavities , 2016, Sensors.

[41]  Feng Chen,et al.  Detection of circular polarization in light scattered from photosynthetic microbes , 2009, Proceedings of the National Academy of Sciences.

[42]  Peter Nordlander,et al.  Fano resonances in plasmonic nanoparticle aggregates. , 2009, The journal of physical chemistry. A.

[43]  A. Bettiol,et al.  Tailoring the slow light behavior in terahertz metasurfaces , 2015, 1502.06684.

[44]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[45]  G. Wurtz,et al.  Plasmonic nanorod metamaterials for biosensing. , 2009, Nature materials.

[46]  S. Anantha Ramakrishna,et al.  Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks , 2013 .

[47]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[48]  Liu Qiao,et al.  High-Q Fano-like resonance based on a symmetric dimer structure and its terahertz sensing application , 2017 .

[49]  Pei-Kuen Wei,et al.  Sensitive biosensors using Fano resonance in single gold nanoslit with periodic grooves. , 2011, Optics express.

[50]  Qiaofeng Tan,et al.  Three-dimensional optical holography using a plasmonic metasurface , 2013, Nature Communications.

[51]  William L. Barnes,et al.  Plasmonic meta-atoms and metasurfaces , 2014, Nature Photonics.

[52]  K. Hane,et al.  Experimental demonstration of sharp Fano resonance in optical metamaterials composed of asymmetric double bars. , 2014, Optics letters.

[53]  Mohammadreza Khorasaninejad,et al.  Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter , 2014, Nature Communications.

[54]  F. Capasso,et al.  Broadband Multifunctional Efficient Meta-Gratings Based on Dielectric Waveguide Phase Shifters. , 2015, Nano letters.

[55]  Sunghoon Kwon,et al.  Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. , 2011, Nature nanotechnology.

[56]  Harald Giessen,et al.  Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. , 2009, Nature materials.

[57]  K. V. Sreekanth,et al.  Enhancing the Angular Sensitivity of Plasmonic Sensors Using Hyperbolic Metamaterials , 2016, Advanced optical materials.

[58]  Federico Capasso,et al.  Ultracompact metasurface in-line polarimeter , 2016 .

[59]  Peter Nordlander,et al.  Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. , 2008, Nano letters.

[60]  Byoungho Lee,et al.  Plasmonic Nanostructures for Nano-Scale Bio-Sensing , 2011, Sensors.

[61]  Peter Nordlander,et al.  Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. , 2009, Nano letters.

[62]  P. Nordlander,et al.  Fanoshells: nanoparticles with built-in Fano resonances. , 2010, Nano letters.

[63]  A. E. Cetin,et al.  Seeing protein monolayers with naked eye through plasmonic Fano resonances , 2011, Proceedings of the National Academy of Sciences.

[64]  Peng Jiang,et al.  Wafer-Scale Surface-Enhanced Raman Scattering Substrates with Highly Reproducible Enhancement , 2009 .

[65]  Klaus Halterman,et al.  Coherent perfect absorption in epsilon-near-zero metamaterials , 2012 .

[66]  Qiaofeng Tan,et al.  Dual-polarity plasmonic metalens for visible light , 2012, Nature Communications.

[67]  Alan B. Craig Understanding Augmented Reality: Concepts and Applications , 2013 .

[68]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[69]  L. Wong,et al.  Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing. , 2011, Nano letters.

[70]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[71]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[72]  Ambarish Ghosh,et al.  Wafer scale fabrication of porous three-dimensional plasmonic metamaterials for the visible region: chiral and beyond. , 2013, Nanoscale.

[73]  Olivier J. F. Martin,et al.  Controlling the Fano interference in a plasmonic lattice , 2007 .

[74]  Hiroaki Misawa,et al.  Highly Sensitive Aluminum-Based Biosensors using Tailorable Fano Resonances in Capped Nanostructures , 2017, Scientific Reports.

[75]  Sailing He,et al.  Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. , 2015, ACS nano.

[76]  Yung Doug Suh,et al.  Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. , 2010, Nature materials.

[77]  Stefan A Maier,et al.  Plasmonic field enhancement and SERS in the effective mode volume picture. , 2006, Optics express.

[78]  Hongxing Xu,et al.  Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications. , 2013, Nanoscale.

[79]  Claudio G. Parazzoli,et al.  Origin of dissipative losses in negative index of refraction materials , 2003 .

[80]  N. Engheta,et al.  Multifrequency optical invisibility cloak with layered plasmonic shells. , 2008, Physical review letters.

[81]  D. Talaga,et al.  Multitip-Localized Enhanced Raman Scattering from a Nanostructured Optical Fiber Array , 2009 .

[82]  N I Zheludev,et al.  Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. , 2007, Physical review letters.

[83]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[84]  Kristin L. Wustholz,et al.  Surface-enhanced Raman spectroscopy of dyes: from single molecules to the artists' canvas. , 2009, Physical chemistry chemical physics : PCCP.

[85]  Tao Chen,et al.  Metamaterials Application in Sensing , 2012, Sensors.

[86]  Benjamin Gallinet,et al.  Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures. , 2013, ACS nano.

[87]  Peter Ashburn,et al.  Carbon nanotubes in a photonic metamaterial. , 2009, Physical review letters.

[88]  Federico Capasso,et al.  Fano-like interference in self-assembled plasmonic quadrumer clusters. , 2010, Nano letters.

[89]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[90]  Sergey I. Bozhevolnyi,et al.  Plasmonic metagratings for simultaneous determination of Stokes parameters , 2015, 1609.04691.

[91]  Y. Wang,et al.  Plasmon-induced transparency in metamaterials. , 2008, Physical review letters.

[92]  A. Alú,et al.  Twisted optical metamaterials for planarized ultrathin broadband circular polarizers , 2012, Nature Communications.

[93]  G. Wurtz,et al.  Bulk plasmon-polaritons in hyperbolic nanorod metamaterial waveguides , 2015, Laser & photonics reviews.

[94]  Dong Qin,et al.  Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. , 2008, Nano letters.

[95]  M. Lipson,et al.  Silicon nanostructure cloak operating at optical frequencies , 2009, 0904.3508.

[96]  Z. Jacob,et al.  Optical Hyperlens: Far-field imaging beyond the diffraction limit. , 2006, Optics express.

[97]  S. Wen,et al.  Compact photonic spin filters , 2016 .

[98]  N. Zheludev,et al.  From metamaterials to metadevices. , 2012, Nature materials.

[99]  S. Bozhevolnyi,et al.  Waveguide metacouplers for in-plane polarimetry , 2016, 1607.02013.

[100]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[101]  Y. Kivshar,et al.  Fano Resonances in All-dielectric Oligomers , 2022 .

[102]  Colton R. Bukowsky,et al.  Near-Unity Unselective Absorption in Sparse InP Nanowire Arrays , 2016 .

[103]  Niels Verellen,et al.  Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities. , 2010, ACS nano.

[104]  H. Bağcı,et al.  A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications , 2013, Scientific Reports.

[105]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[106]  N. Engheta,et al.  Parallel-plate metamaterials for cloaking structures. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[107]  Willie J Padilla,et al.  Terahertz Magnetic Response from Artificial Materials , 2004, Science.

[108]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[109]  C. Pfeiffer,et al.  Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. , 2013, Physical review letters.

[110]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[111]  Pablo G. Etchegoin,et al.  Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study , 2007 .

[112]  Mohsen Rahmani,et al.  Fano resonance in novel plasmonic nanostructures , 2013 .

[113]  Sang‐Hyun Oh,et al.  Ultrasmooth Patterned Metals for Plasmonics and Metamaterials , 2009, Science.

[114]  Pei Ding,et al.  Double Fano-type resonances in heptamer-hole array transmission spectra with high refractive index sensing , 2015 .

[115]  Gennady Shvets,et al.  Fano-resonant metamaterials and their applications , 2013 .

[116]  W. Lu,et al.  Hierarchical Porous Plasmonic Metamaterials for Reproducible Ultrasensitive Surface‐Enhanced Raman Spectroscopy , 2015, Advanced materials.

[117]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[118]  U. Eigenthaler,et al.  Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. , 2010, Nano letters.

[119]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[120]  Efe Ilker,et al.  Extreme sensitivity biosensing platform based on hyperbolic metamaterials. , 2016, Nature materials.

[121]  G. Shvets,et al.  Broadband slow light metamaterial based on a double-continuum Fano resonance. , 2010, Physical review letters.

[122]  Prashant Nagpal,et al.  Three-dimensional plasmonic nanofocusing. , 2010, Nano letters.

[123]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films. , 1904, Proceedings of the Royal Society of London.

[124]  Z. Jacob,et al.  All-dielectric metamaterials. , 2016, Nature nanotechnology.

[125]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[126]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[127]  Christian Hafner,et al.  Nanoscale roughness on metal surfaces can increase tip-enhanced Raman scattering by an order of magnitude. , 2007, Nano letters.

[128]  A. Phan,et al.  Metamaterials-based label-free nanosensor for conformation and affinity biosensing. , 2013, ACS nano.

[129]  Hyungsoon Im,et al.  Vertically oriented sub-10-nm plasmonic nanogap arrays. , 2010, Nano letters.

[130]  Willie J Padilla,et al.  Metamaterial Electromagnetic Wave Absorbers , 2012, Advanced materials.

[131]  Marco Rahm,et al.  Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range , 2012, 1203.4527.

[132]  N. Zheludev,et al.  Metamaterial analog of electromagnetically induced transparency. , 2008, Physical review letters.

[133]  Federico Capasso,et al.  Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. , 2012, Nano letters.

[134]  Liesbet Lagae,et al.  Tuning the interaction between propagating and localized surface plasmons for surface enhanced Raman scattering in water for biomedical and environmental applications , 2014 .

[135]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[136]  Adriana Passaseo,et al.  Triple-helical nanowires by tomographic rotatory growth for chiral photonics , 2015, Nature Communications.

[137]  Constantin R. Simovski,et al.  Topological Darkness in Self‐Assembled Plasmonic Metamaterials , 2014, Advanced materials.

[138]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[139]  M. Albrecht,et al.  Anomalously intense Raman spectra of pyridine at a silver electrode , 1977 .

[140]  M. Kafesaki,et al.  Magnetic response of split-ring resonators in the far-infrared frequency regime. , 2005, Optics letters.

[141]  Guohui Xiao,et al.  Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit , 2013, Nature Communications.

[142]  Willie J Padilla,et al.  Infrared spatial and frequency selective metamaterial with near-unity absorbance. , 2010, Physical review letters.

[143]  Yuri S. Kivshar,et al.  High‐Efficiency Dielectric Huygens’ Surfaces , 2015 .

[144]  Mohammad Salim,et al.  Enhanced Figure of Merit in Fano Resonance-Based Plasmonic Refractive Index Sensor , 2015, IEEE Sensors Journal.

[145]  Alp Artar,et al.  Multispectral plasmon induced transparency in coupled meta-atoms. , 2011, Nano letters.

[146]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[147]  Shuang Zhang,et al.  Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. , 2005, Physical review letters.

[148]  A. Alú,et al.  Full control of nanoscale optical transmission with a composite metascreen. , 2013, Physical review letters.

[149]  Martin Koch,et al.  Sharp Fano resonances in THz metamaterials. , 2011, Optics express.

[150]  David R. Smith,et al.  Surface-Enhanced Raman Scattering from Silver-Plated Porous Silicon , 2004 .

[151]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[152]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[153]  Federico Capasso,et al.  Ultra-compact visible chiral spectrometer with meta-lenses , 2017 .

[154]  Luke P. Lee,et al.  Magnetic Nanocrescents as Controllable Surface‐Enhanced Raman Scattering Nanoprobes for Biomolecular Imaging , 2005 .

[155]  Thomas A. Germer,et al.  Circular polarization in scattered light as a possible biomarker , 2009 .

[156]  K. Tsakmakidis,et al.  ‘Trapped rainbow’ storage of light in metamaterials , 2007, Nature.

[157]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[158]  Byoungho Lee,et al.  Review on subwavelength confinement of light with plasmonics , 2010 .

[159]  P. Nordlander,et al.  Fano resonances in planar silver nanosphere clusters , 2010 .

[160]  Zhaowei Liu,et al.  Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. , 2010, Nature communications.

[161]  V. Shalaev Optical negative-index metamaterials , 2007 .

[162]  R. V. Van Duyne,et al.  Wavelength-scanned surface-enhanced Raman excitation spectroscopy. , 2005, The journal of physical chemistry. B.

[163]  Erez Hasman,et al.  Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures , 2002 .

[164]  Luca Dal Negro,et al.  Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing. , 2009, Nano letters.

[165]  Li Minhua,et al.  Transmission properties of composite metamaterials in free space , 2008, 2008 8th International Symposium on Antennas, Propagation and EM Theory.

[166]  Thomas Søndergaard,et al.  Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves , 2012, Nature Communications.

[167]  Xiaofeng Li,et al.  Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing. , 2014, Nanoscale.

[168]  Jeremy J Baumberg,et al.  Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals. , 2005, Nano letters.

[169]  S. Weiss,et al.  Controlling surface enhanced Raman scattering using grating-type patterned nanoporous gold substrates , 2013 .

[170]  K. Crozier,et al.  Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies. , 2010, ACS nano.

[171]  O. Martin,et al.  Refractive index sensing with Fano resonant plasmonic nanostructures: a symmetry based nonlinear approach. , 2014, Nanoscale.

[172]  C. Cao,et al.  Intelligent and ultrasensitive analysis of mercury trace contaminants via plasmonic metamaterial-based surface-enhanced Raman spectroscopy. , 2014, Small.

[173]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .