The Shuttle Radar Topography Mission: A Global DEM

Digital topographic data are critical for a variety of civilian, commercial, and military applications. Scientists use Digital Elevation Models (DEM) to map drainage patterns and ecosystems, and to monitor land surface changes over time. The mountain-building effects of tectonics and the climatic effects of erosion can also be modeled with DEW The data's military applications include mission planning and rehearsal, modeling and simulation. Commercial applications include determining locations for cellular phone towers, enhanced ground proximity warning systems for aircraft, and improved maps for backpackers. The Shuttle Radar Topography Mission (SRTM) (Fig. 1), is a cooperative project between NASA and the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense. The mission is designed to use a single-pass radar interferometer to produce a digital elevation model of the Earth's land surface between about 60 degrees north and south latitude. The DEM will have 30 m pixel spacing and about 15 m vertical errors.

[1]  K. Feigl,et al.  Discrimination of geophysical phenomena in satellite radar interferograms , 1995 .

[2]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[3]  P. Rosen,et al.  Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps , 1997 .

[4]  Riley M. Duren,et al.  Metrology, attitude, and orbit determination for spaceborne interferometric synthetic aperture radar , 1998, Defense, Security, and Sensing.

[5]  R. Goldstein,et al.  Topographic mapping from interferometric synthetic aperture radar observations , 1986 .

[6]  Giorgio Franceschetti,et al.  X-SAR interferometry: first results , 1995, IEEE Trans. Geosci. Remote. Sens..

[7]  Didier Massonnet,et al.  Atmospheric Propagation heterogeneities revealed by ERS‐1 interferometry , 1996 .

[8]  Søren Nørvang Madsen,et al.  Topographic mapping using radar interferometry: processing techniques , 1993, IEEE Trans. Geosci. Remote. Sens..

[9]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[10]  Willy Bertiger,et al.  GPS Receivers for Shuttle Radar Topography Mission , 1998 .

[11]  Howard A. Zebker,et al.  Radar interferometry studies of the Earth's topography , 1992 .

[12]  Charles Werner,et al.  Accuracy of topographic maps derived from ERS-1 interferometric radar , 1994, IEEE Trans. Geosci. Remote. Sens..

[13]  J. L. van Genderen,et al.  SAR interferometry : issues, techniques, applications , 1996 .

[14]  Didier Massonnet,et al.  SATELLITE RADAR INTERFEROMETRY , 1997 .

[15]  Luciano Vieira Dutra,et al.  Generation of digital elevation models by using SIR-C/X-SAR multifrequency two-pass interferometry: the Etna case study , 1996, IEEE Trans. Geosci. Remote. Sens..

[16]  Richard M. Goldstein,et al.  Atmospheric limitations to repeat‐track radar interferometry , 1995 .

[17]  Diane L. Evans,et al.  Overview of results of Spaceborne Imaging Radar-C, X-Band Synthetic Aperture Radar (SIR-C/X-SAR) , 1995, IEEE Trans. Geosci. Remote. Sens..