Uniqueness and symmetry of equilibria in a chemotaxis model

Abstract We consider in a disc of a class of parameter-dependent, nonlocal elliptic boundary value problems that describes the steady states of some chemotaxis systems. If the appearing parameter is less than an explicit critical value, we establish several uniqueness results for solutions that are invariant under a group of rotations. Furthermore, we discuss the associated consequences for the time asymptotic behavior of the solutions to the corresponding time dependent chemotaxis systems. Our results also provide optimal constants in some Moser–Trudinger type inequalities.

[1]  M. A. Herrero,et al.  Chemotactic collapse for the Keller-Segel model , 1996, Journal of mathematical biology.

[2]  Evelyn Fox Keller ASSESSING THE KELLER-SEGEL MODEL: HOW HAS IT FARED? , 1980 .

[3]  M. Lucia Isoperimetric profile and uniqueness for Neumann problems , 2009 .

[4]  Jerome Percus,et al.  Nonlinear aspects of chemotaxis , 1981 .

[5]  John Tyler Bonner,et al.  The Cellular Slime Molds , 1967 .

[6]  H. Gajewski,et al.  Global Behaviour of a Reaction‐Diffusion System Modelling Chemotaxis , 1998 .

[7]  Takashi Suzuki Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity , 1992 .

[8]  B. Gidas,et al.  Symmetry and related properties via the maximum principle , 1979 .

[9]  G. M. Odell,et al.  Traveling bands of chemotactic bacteria revisited , 1976 .

[10]  Eduard Feireisl,et al.  On convergence to equilibria for the Keller–Segel chemotaxis model , 2007 .

[11]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[12]  José A. Carrillo,et al.  Infinite Time Aggregation for the Critical Patlak-Keller-Segel model in R 2 , 2007 .

[13]  A. Cianchi Moser-trudinger inequalities without boundary conditions and isoperimetric problems , 2005 .

[14]  Statistical mechanics approach to some problems in conformal geometry , 2000, math-ph/0002043.

[15]  M. H. A. Newman,et al.  Topology . Elements of the topology of plane sets of points , 1939 .

[16]  M. Kiessling,et al.  Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry , 1994 .

[17]  P. Laurençot,et al.  The 8π‐problem for radially symmetric solutions of a chemotaxis model in the plane , 2006 .

[18]  M. Cohen,et al.  Wave propagation in the early stages of aggregation of cellular slime molds. , 1971, Journal of theoretical biology.

[19]  Changshou Lin,et al.  One-dimensional symmetry of periodic minimizers for a mean field equation , 2007 .

[20]  L A Segel,et al.  A numerical study of the formation and propagation of traveling bands of chemotactic bacteria. , 1974, Journal of theoretical biology.

[21]  C. Hong A best constant and the Gaussian curvature , 1986 .

[22]  D E Koshland,et al.  Quantitative analysis of bacterial migration in chemotaxis. , 1972, Nature: New biology.

[23]  M. C. Chang,et al.  Effect of Prostaglandin F2α on the Early Pregnancy of Rabbits , 1972, Nature.

[24]  L. Segel,et al.  Traveling bands of chemotactic bacteria: a theoretical analysis. , 1971, Journal of theoretical biology.

[25]  S. Łojasiewicz,et al.  An introduction to the theory of real functions , 1988 .

[26]  Herbert Amann,et al.  Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems , 1990, Differential and Integral Equations.

[27]  Lei Zhang,et al.  A priori estimates and uniqueness for some mean field equations , 2005 .

[28]  Circular symmetrization and extremal Robin conditions , 1999 .

[29]  Dirk Horstmann,et al.  A Constructive Approach to Traveling Waves in Chemotaxis , 2004, J. Nonlinear Sci..

[30]  J. Adler,et al.  Chemoreceptors in bacteria. , 1969, Science.

[31]  Michael Struwe,et al.  On multivortex solutions in Chern-Simons gauge theory , 1998 .

[32]  P. Laurençot,et al.  The $8\pi$-problem for radially symmetric solutions of a chemotaxis model in a disc , 2006 .

[33]  John Tyler Bonner,et al.  The Cellular Slime Molds. , 1967 .

[34]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[35]  Nonlinear differential problems with first- or second-order differences in Hilbert spaces , 2009 .

[36]  G. Tarantello Multiple condensate solutions for the Chern–Simons–Higgs theory , 1996 .

[37]  Herbert Amann,et al.  Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .

[38]  Thomas Hillen,et al.  Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding , 2001, Adv. Appl. Math..

[39]  James Serrin,et al.  A symmetry problem in potential theory , 1971 .

[40]  B. Gelbaum,et al.  Problems in analysis , 1964 .

[41]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[42]  Christian Houdré,et al.  Some Connections Between Isoperimetric and Sobolev-Type Inequalities , 1997 .

[43]  M. Kiessling Statistical mechanics of classical particles with logarithmic interactions , 1993 .

[44]  Takashi Suzuki,et al.  Concentration Behavior of Blow-up Solutions for a Simplified System of Chemotaxis (Variational Problems and Related Topics) , 2001 .

[45]  Hans G. Othmer,et al.  Aggregation, Blowup, and Collapse: The ABC's of Taxis in Reinforced Random Walks , 1997, SIAM J. Appl. Math..

[46]  Tomasz Zastawniak,et al.  Problem Books in Mathematics , 2004 .

[47]  Paul Yang,et al.  Conformal deformation of metrics on $S^2$ , 1988 .

[48]  R. Hamilton ISOPERIMETRIC ESTIMATES FOR THE CURVE SHRINKING FLOW IN THE PLANE , 1996 .

[49]  E. Onofri On the positivity of the effective action in a theory of random surfaces , 1982 .

[50]  Evelyn Fox Keller,et al.  Necessary and sufficient conditions for chemotactic bands , 1975 .

[51]  William P. Ziemer,et al.  Minimal rearrangements of Sobolev functions. , 1987 .

[52]  L. A. Segel,et al.  A gradually slowing travelling band of chemotactic bacteria , 1984, Journal of mathematical biology.

[53]  Katharina Post,et al.  A Non-linear Parabolic System Modeling Chemotaxis with Sensitivity Functions , 1999 .

[54]  Emanuele Caglioti,et al.  A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description , 1992 .

[55]  Negative temperature bounds for 2D vorticity compounds , 1995 .

[56]  F. Pacella Symmetry Results for Solutions of Semilinear Elliptic Equations with Convex Nonlinearities , 2002 .

[57]  M. A. Herrero,et al.  A blow-up mechanism for a chemotaxis model , 1997 .

[58]  Guofang Wang,et al.  Concentration phenomena of two-vortex solutions in a Chern-Simons model , 2004 .