Integrable matrix equations related to pairs of compatible associative algebras

We study associative multiplications in semi-simple associative algebras over {\bb C} compatible with the usual one. An interesting class of such multiplications is related to the affine Dynkin diagrams of \skew5\tilde{A}_{2 k-1}, \tilde{D}_{k}, \tilde{E}_{6}, \tilde{E}_{7} , and \tilde{E}_{8} -type. In this paper we investigate in detail the multiplications of the \skew5\tilde{A}_{2 k-1} -type and integrable matrix ODEs and PDEs generated by them.

[1]  V. Sokolov,et al.  Generalized Heisenberg equations on ℤ-graded Lie algebrasLie algebras , 1999 .

[2]  Tudor S. Ratiu,et al.  Euler-Poisson equations on Lie algebras and the N-dimensional heavy rigid body , 1981 .

[3]  Vladimir V. Sokolov,et al.  Integrable ODEs on Associative Algebras , 1999, solv-int/9908004.

[4]  W. Stekloff Sur le mouvement d'un corps solide ayant une cavité de forme ellipsoïdale remplie par un liquide incompressible et sur les variations des latitudes , 2022 .

[5]  K. Pohlmeyer,et al.  Integrable Hamiltonian systems and interactions through quadratic constraints , 1976 .

[6]  Vladimir V. Sokolov,et al.  Compatible Lie Brackets and Integrable Equations of the Principal Chiral Model Type , 2002 .

[7]  V. Sokolov,et al.  Factorization of the Loop Algebra and Integrable Toplike Systems , 2004, nlin/0403023.

[8]  Vladimir V. Sokolov,et al.  Compatible Lie Brackets and the Yang-Baxter Equation , 2006 .

[9]  Franco Magri,et al.  A Simple model of the integrable Hamiltonian equation , 1978 .

[10]  H. Poincaré Sur la précession des corps déformables , 1910, Bulletin astronomique.

[11]  Алексей Владимирович Борисов,et al.  Согласованные скобки Пуассона на алгебрах Ли@@@Compatible Poisson Brackets on Lie Algebras , 2002 .

[12]  V. Sokolov,et al.  Factorization of the Loop Algebras and Compatible Lie Brackets , 2005 .

[13]  S. Manakov,et al.  Note on the integration of Euler's equations of the dynamics of an n-dimensional rigid body , 1976 .

[14]  T Ratiu Euler-Poisson equations on Lie algebras and the N-dimensional heavy rigid body. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Alexander Odesskii,et al.  Algebraic structures connected with pairs of compatible associative algebras , 2005 .