A Mortality Model for Penicillium bilaiae Subjected to Convective Air Drying

Drying of microbial cells for storage purposes is a widely practised technology. A new statistical model is proposed for survivability of microbial cells during convective air drying, where mortality is predicted by hazard functions and acceleration factors applied to temperature, moisture content and drying rate variables. The model is based on experimental survivability data generated from drying Penicillium bilaiae conidia at temperatures from 20 to 60°C and air relative humidities from 3 to 75%. Experimental data using “one at a time” variable manipulation was used to obtain five model parameters. Despite several simplifications to reduce the number of variable cross-dependencies, the model was successfully validated using combined stress trials with maximum deviations of ±15%. Le sechage de cellules microbiennes a des fins de stockage est une technologie largement repandue. On propose un nouveau modele statistique de survivabilite des cellules microbiennes lors du sechage a air convectif, dans lequel la mortalite est predite par des fonctions de risque et des facteurs d'acceleration appliques aux variables de temperature, de teneur en humidite et de vitesse de sechage. Le modele repose sur des donnees de survivabilite experimentales obtenues par le sechage de conidia Penicillium bilaiae a des temperatures comprises entre 20 et 60°C et des humidites d'air relatives de 3 a 75 %. On a utilise des donnees experimentales avec manipulation de variables de type « une a la fois » pour obtenir cinq parametres de modeles. Malgre plusieurs simplifications pour reduire le nombre de dependances croisees des variables, le modele a ete valide avec succes par des essais de stress combines avec des ecarts maximums de ± 15 %.

[1]  T. Friesen,et al.  Experimental determination of viability loss of Penicillium bilaiae conidia during convective air-drying , 2005, Applied Microbiology and Biotechnology.

[2]  T. Friesen,et al.  Optimization of the Convective Air Drying of Penicillium bilaii for Improved Efficiency , 2004 .

[3]  T. Ross,et al.  Predictive microbiology: providing a knowledge-based framework for change management. , 2002, International journal of food microbiology.

[4]  M. J. Ocio,et al.  Empirical model building based on Weibull distribution to describe the joint effect of pH and temperature on the thermal resistance of Bacillus cereus in vegetable substrate. , 2002, International journal of food microbiology.

[5]  R. Ricklefs,et al.  Biological implications of the Weibull and Gompertz models of aging. , 2002, The journals of gerontology. Series A, Biological sciences and medical sciences.

[6]  S. Birkeland,et al.  Effect of protective solutes on leakage from and survival of immobilized Lactobacillus subjected to drying, storage and rehydration , 1999, Journal of applied microbiology.

[7]  P. Gervais,et al.  Saccharomyces cerevisiae viability is strongly dependant on rehydration kinetics and the temperature of dried cells , 1999, Journal of applied microbiology.

[8]  M. B. Cole,et al.  Biphasic Thermal Inactivation Kinetics in Salmonella enteritidis PT4 , 1998, Applied and Environmental Microbiology.

[9]  W. M. Ingledew,et al.  Mechanism of viability loss during fluidized bed drying of baker's yeast , 1997 .

[10]  Abdolsamad Tadayyon,et al.  Contact‐Sorption Drying of Penicillium bilaii in a Fluidized Bed Dryer , 1997 .

[11]  G.S.V. Raghavan,et al.  A Mathematical Model for Constant and Intermittent Batch Drying of Grains in a Novel Rotating Jet Spouted bed , 1996 .

[12]  A. Rapoport,et al.  Characteristics of cellular membranes at rehydration of dehydrated yeast Saccharomyces cerevisiae , 1984, Applied Microbiology and Biotechnology.

[13]  D. Josić Optimization of process conditions for the production of active dry yeast , 1982 .

[14]  T. Labuza,et al.  Death kinetics of yeast in spray drying , 1974, Biotechnology and bioengineering.

[15]  H. Pauly Über den physikalisch-chemischen Zustand des Wassers und der Elektrolyte in der lebenden Zelle , 1973 .

[16]  J. R. Esty,et al.  The Thermal Death Point in Relation to Time of Typical Thermophilic Organisms , 1920 .

[17]  Thorvald Madsen,et al.  Zur Theorie der Desinfektion I , 1907, Zeitschrift für Hygiene und Infektionskrankheiten.

[18]  J. Antheunisse,et al.  Rate of drying and the survival of microorganisms , 2004, Antonie van Leeuwenhoek.

[19]  Vaios T. Karathanos,et al.  Prediction of the effective moisture diffusivity in gelatinized food systems , 1993 .

[20]  M. Verbeek,et al.  Modelling the inactivation of Lactobacillus plantarum during a drying process. , 1992 .

[21]  M. Verbeek,et al.  Inactivation of Lactobacillus plantarum during drying. II. Measurement and modelling of the thermal inactivation. , 1990 .

[22]  H. Pauly [The physico-chemical state of water and electrolytes in the living cell (author's transl)]. , 1973, Biophysik.

[23]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .