Hybrid Adaptive Ray-Moment Method (HARM2): A highly parallel method for radiation hydrodynamics on adaptive grids

We present a highly-parallel multi-frequency hybrid radiation hydrodynamics algorithm that combines a spatially-adaptive long characteristics method for the radiation field from point sources with a moment method that handles the diffuse radiation field produced by a volume-filling fluid. Our Hybrid Adaptive Ray-Moment Method (HARM2) operates on patch-based adaptive grids, is compatible with asynchronous time stepping, and works with any moment method. In comparison to previous long characteristics methods, we have greatly improved the parallel performance of the adaptive long-characteristics method by developing a new completely asynchronous and non-blocking communication algorithm. As a result of this improvement, our implementation achieves near-perfect scaling up to O ( 10 3 ) processors on distributed memory machines. We present a series of tests to demonstrate the accuracy and performance of the method.

[1]  R. Klein,et al.  A new scheme for multidimensional line transfer. II - ETLA method in one dimension with application to iron K-alpha lines , 1992 .

[2]  T. Henning,et al.  Fast and accurate frequency-dependent radiation transport for hydrodynamics simulations in massive star formation , 2010, 1001.3301.

[3]  Dimitri Mihalas,et al.  On laboratory-frame radiation hydrodynamics , 2001 .

[4]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[5]  R. Teyssier,et al.  Radiation hydrodynamics with adaptive mesh refinement and application to prestellar core collapse. I. Methods , 2011, 1102.1216.

[6]  R. Klein,et al.  An unstable truth: how massive stars get their mass , 2016, 1607.03117.

[7]  Daniel F. Martin,et al.  A STABLE, ACCURATE METHODOLOGY FOR HIGH MACH NUMBER, STRONG MAGNETIC FIELD MHD TURBULENCE WITH ADAPTIVE MESH REFINEMENT: RESOLUTION AND REFINEMENT STUDIES , 2011, 1111.2784.

[8]  R. Teyssier Grid-Based Hydrodynamics in Astrophysical Fluid Flows , 2015 .

[9]  Richard I. Klein,et al.  Equations and Algorithms for Mixed-frame Flux-limited Diffusion Radiation Hydrodynamics , 2006 .

[10]  T. Henning,et al.  Rosseland and Planck mean opacities for protoplanetary discs , 2003, astro-ph/0308344.

[11]  Richard I. Klein,et al.  Accretion disk coronae in high-luminosity systems , 1994, astro-ph/9405016.

[12]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[13]  T. Lejeune,et al.  A standard stellar library for evolutionary synthesis , 1998 .

[14]  G. Mellema,et al.  Hybrid Characteristics: 3D radiative transfer for parallel adaptive mesh refinement hydrodynamics , 2005, astro-ph/0505213.

[15]  J. Weingartner,et al.  Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud , 2001 .

[16]  T. Abel,et al.  enzo+moray: radiation hydrodynamics adaptive mesh refinement simulations with adaptive ray tracing , 2010, 1012.2865.

[17]  J. Stone,et al.  Magnetohydrodynamic Evolution of H II Regions in Molecular Clouds: Simulation Methodology, Tests, and Uniform Media , 2006, astro-ph/0606539.

[18]  Domenic D'Ambrosio,et al.  Numerical Instablilities in Upwind Methods: Analysis and Cures for the “Carbuncle” Phenomenon , 2001 .

[19]  Strasbourg,et al.  A standard stellar library for evolutionary synthesis: I. calibration of theoretical spectra , 1997, astro-ph/9701019.

[20]  R. Klein,et al.  A new scheme for multidimensional line transfer. III. A two-dimensional Lagrangian variable tensor method with discontinuous finite-element Sn transport , 1996 .

[21]  G. C. Pomraning,et al.  A flux-limited diffusion theory , 1981 .

[22]  P. Teuben,et al.  Athena: A New Code for Astrophysical MHD , 2008, 0804.0402.

[23]  Richard I. Klein,et al.  On the Solution of the Time-Dependent inertial-Frame Equation of radiative Transfer in Moving Media to O(vc)☆ , 1982 .

[24]  M. Norman,et al.  Simulating Inhomogeneous Reionization , 1998, astro-ph/9807282.

[25]  Rolf Kuiper,et al.  A GENERAL HYBRID RADIATION TRANSPORT SCHEME FOR STAR FORMATION SIMULATIONS ON AN ADAPTIVE GRID , 2014, 1410.4259.

[26]  M. Krumholz Star Formation with Adaptive Mesh Refinement Radiation Hydrodynamics , 2010, Proceedings of the International Astronomical Union.

[27]  B. Wandelt,et al.  Adaptive ray tracing for radiative transfer around point sources , 2001, astro-ph/0111033.

[28]  James M. Stone,et al.  A RADIATION TRANSFER SOLVER FOR ATHENA USING SHORT CHARACTERISTICS , 2012, 1201.2222.

[29]  Richard I. Klein,et al.  Single and multiple star formation in turbulent molecular cloud cores , 2002 .

[30]  M. Wolfire,et al.  Conditions for the formation of massive stars , 1987 .

[31]  NUMERICAL TREATMENT OF RADIATIVE TRANSFER , 2005 .

[32]  M. Wolfire,et al.  The temperature structure in accretion flows onto massive protostars , 1986 .

[33]  R. Teyssier,et al.  A scheme for radiation pressure and photon diffusion with the M1 closure in ramses-rt , 2014, 1411.6440.

[34]  M. Krumholz,et al.  THE DYNAMICS OF RADIATION-PRESSURE-DOMINATED H ii REGIONS , 2009, 0906.4343.

[35]  T. Peters,et al.  Radiation hydrodynamics using characteristics on adaptive decomposed domains for massively parallel star formation simulations , 2015, 1501.04501.

[36]  Richard I. Klein,et al.  Star formation with 3-D adaptive mesh refinement: the collapse and fragmentation of molecular clouds , 1999 .

[37]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[38]  James M. Stone,et al.  A GODUNOV METHOD FOR MULTIDIMENSIONAL RADIATION MAGNETOHYDRODYNAMICS BASED ON A VARIABLE EDDINGTON TENSOR , 2012, 1201.2223.