Algebraic cycles from a computational point of view

The Hodge conjecture implies decidability of the question whether a given topological cycle on a smooth projective variety over the field of algebraic complex numbers can be represented by an algebraic cycle. We discuss some details concerning this observation, and then propose that it suggests going on to actually implement an algorithmic search for algebraic representatives of classes which are known to be Hodge classes.

[1]  P. Deligne Variétés de Shimura: interprétation modulaire et techniques de construction de modèles canoniques , 1979 .

[2]  Bruno Fabre Locally residual currents and Dolbeault cohomology on projective manifolds , 2006 .

[3]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[4]  Julia Robinson Unsolvable diophantine problems , 1969 .

[5]  H. Putnam,et al.  The Decision Problem for Exponential Diophantine Equations , 1961 .

[6]  Stefan Reiter,et al.  An Algorithm of Katz and its Application to the Inverse Galois Problem , 2000, J. Symb. Comput..

[7]  B. Mourrain,et al.  The Bernstein Basis and Real Root Isolation , 2007 .

[8]  Barry Mazur,et al.  Questions of decidability and undecidability in Number Theory , 1994, Journal of Symbolic Logic.

[9]  Sai-Kee Yeung,et al.  Fake projective planes , 2005, math/0512115.

[10]  S. D. Chatterji Proceedings of the International Congress of Mathematicians , 1995 .

[11]  L. Moret-Bailly Elliptic curves and Hilbert’s tenth problem for algebraic function fields over real and p-adic fields , 2004, math/0409103.

[12]  C. Fefferman,et al.  Relativistic Stability of Matter - I , 1986 .

[13]  W. Brownawell Bounds for the degrees in the Nullstellensatz , 1987 .

[14]  M. Saito Chow-Kunneth decomposition for varieties with low cohomological level , 2006, math/0604254.

[15]  J. Dodziuk Finite-difference approach to the Hodge theory of harmonic forms , 1976 .

[16]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[17]  S. Donaldson Scalar Curvature and Projective Embeddings, I , 2001 .

[18]  T. Hales The Kepler conjecture , 1998, math/9811078.

[19]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[20]  Absolute Chow-Künneth projectors for modular varieties , 2005 .

[21]  J. Hass,et al.  Double bubbles minimize , 2000, math/0003157.

[22]  Vin de Silva,et al.  Topological approximation by small simplicial complexes , 2003 .

[23]  M. Mitrea,et al.  Finite Energy Solutions of Maxwell's Equations and Constructive Hodge Decompositions on Nonsmooth Riemannian Manifolds , 2002 .

[24]  Saugata Basu,et al.  Computing the Top Betti Numbers of Semialgebraic Sets Defined by Quadratic Inequalities in Polynomial Time , 2006, Found. Comput. Math..

[25]  C. Fefferman The N-body problem in quantum mechanics , 1986 .

[26]  Loring W. Tu,et al.  Differential forms in algebraic topology , 1982, Graduate texts in mathematics.

[27]  S. Kleiman,et al.  Algebraic cycles and the Weil conjectures , 1968 .

[28]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[29]  A. Nabutovsky Nonrecursive functions in real algebraic geometry , 1989 .

[30]  N. M. Katz Rigid Local Systems , 1995 .

[31]  A. Nabutovsky Isotopies and non-recursive functions in real algebraic geometry , 1990 .

[32]  James D. Lewis,et al.  A survey of the Hodge conjecture , 1999 .

[33]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[34]  HYPERGEOMETRIC SERIES AND HODGE CYCLES OF FOUR DIMENSIONAL CUBIC HYPERSURFACES , 2005, math/0507436.

[35]  Shmuel Weinberger,et al.  Algorithmic unsolvability of the triviality problem for multidimensional knots , 1996 .

[36]  P. Deligne Travaux de Shimura , 1971 .

[37]  Ehud Hrushovski,et al.  Computing the Galois group of a linear differential equation , 2002 .

[38]  Stephen Smale,et al.  Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..

[39]  D. Lieberman NUMERICAL AND HOMOLOGICAL EQUIVALENCE OF ALGEBRAIC CYCLES ON HODGE MANIFOLDS. , 1968 .

[40]  Angus Macintyre Model theory: Geometrical and set-theoretic aspects and prospects , 2003, Bull. Symb. Log..

[41]  C. Voisin Hodge loci and absolute Hodge classes , 2006, Compositio Mathematica.

[42]  André Galligo,et al.  From an approximate to an exact absolute polynomial factorization , 2006, J. Symb. Comput..

[43]  Steve Smale,et al.  Algorithms for Solving Equations , 2010 .

[44]  Afra Zomorodian,et al.  Computing Persistent Homology , 2005, Discret. Comput. Geom..

[45]  Y. Yomdin GLOBAL BOUNDS FOR THE BETTI NUMBERS OF REGULAR FIBERS OF DIFFERENTIABLE MAPPINGS , 1985 .

[46]  R. Lazarsfeld Lengths of periods and seshadri constants of abelian varieties , 1996, alg-geom/9606012.

[47]  M. Hirsch,et al.  On Algorithms for Solving f(x)=0 , 1979 .

[48]  P. Hanlon Hodge structures on posets , 2006 .

[49]  R. Llave Computer Assisted Proofs of Stability of Matter , 1991 .

[50]  Alexander Nabutovsky Fundamental group and contractible closed geodesics , 1996 .

[51]  Nodes and the Hodge conjecture , 2002, math/0212216.

[52]  J. Friedman,et al.  Computing Betti Numbers via Combinatorial Laplacians , 1996, STOC '96.

[53]  M. Narasimhan The Standard Conjectures on Algebraic Cycles , 2009 .

[54]  Ralf Hiptmair,et al.  Discrete Hodge operators , 2001, Numerische Mathematik.