Structural and electronic properties of chiral single-wall copper nanotubes

[1]  Ke-wei Xu,et al.  Structural and electronic properties of ultrathin copper nanowires: A density-functional theory study , 2013 .

[2]  Arun Kumar,et al.  Ab initio study of structural, electronic and dielectric properties of free standing ultrathin nanowires of noble metals , 2012 .

[3]  Jian-min Zhang,et al.  Structural and electronic properties of copper nanowire encapsulated into BeO nanotube: First-principles study , 2012 .

[4]  Song Jin,et al.  The solution growth of copper nanowires and nanotubes is driven by screw dislocations. , 2012, Nano letters.

[5]  C. He,et al.  Effect of Electric and Stress Field on Structures and Quantum Conduction of Cu Nanowires , 2011 .

[6]  M. Zeng,et al.  Adsorbate and defect effects on electronic and transport properties of gold nanotubes , 2011, Nanotechnology.

[7]  Neerav Kharche,et al.  A comparative study of quantum transport properties of silver and copper nanowires using first principles calculations , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[8]  J. Cserti,et al.  Chiral currents in gold nanotubes , 2010, 1003.0619.

[9]  James F. Rohan,et al.  Additive influence on Cu nanotube electrodeposition in anodised aluminium oxide templates , 2009 .

[10]  Bikash C. Gupta,et al.  Density functional study of single-wall and double-wall platinum nanotubes , 2008 .

[11]  M. Venkata Kamalakar,et al.  A Novel Method of Synthesis of Dense Arrays of Aligned Single Crystalline Copper Nanotubes Using Electrodeposition in the Presence of a Rotating Electric Field , 2008 .

[12]  Guanghou Wang,et al.  Structures and quantum conductances of atomic-sized copper nanowires , 2006 .

[13]  Liduo Wang,et al.  Generation and growth mechanism of metal (Fe, Co, Ni) nanotube arrays. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[14]  C. Cao,et al.  Electrochemically and template-synthesized nickel nanorod arrays and nanotubes , 2006 .

[15]  B. Delley,et al.  Oxygen adsorption and stability of surface oxides on Cu(111) : A first-principles investigation , 2006 .

[16]  S. L. Elizondo,et al.  Ab initio study of helical silver single-wall nanotubes and nanowires , 2006 .

[17]  Guanghou Wang,et al.  Elastic and plastic deformations of nickel nanowires under uniaxial compression , 2005 .

[18]  C. Nan,et al.  Large-Scale Self-Assembled Ag Nanotubes , 2005 .

[19]  C. Murphy,et al.  Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. , 2005, The journal of physical chemistry. B.

[20]  S. Sanvito Ab-initio methods for spin-transport at the nanoscale level , 2005, cond-mat/0503445.

[21]  Weiqi Wang,et al.  Electroless deposition of open-end Cu nanotube arrays , 2004 .

[22]  S. Ciraci,et al.  Chiral single-wall gold nanotubes. , 2004, Physical review letters.

[23]  D. Bowler Atomic-scale nanowires: physical and electronic structure , 2004 .

[24]  Y. Oshima,et al.  Helical gold nanotube synthesized at 150 K. , 2003, Physical review letters.

[25]  Y. Oshima,et al.  High-resolution ultrahigh-vacuum electron microscopy of helical gold nanowires: junction and thinning process. , 2003, Journal of electron microscopy.

[26]  Y. Oshima,et al.  Evidence of a single-wall platinum nanotube , 2002 .

[27]  A. D. Corso,et al.  String tension and stability of magic tip-suspended nanowires. , 2001, Science.

[28]  Takayanagi,et al.  Synthesis and characterization of helical multi-shell gold nanowires , 2000, Science.

[29]  Steven G. Louie,et al.  Self-inductance of chiral conducting nanotubes , 1999 .

[30]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[31]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[32]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[33]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[34]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[35]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[36]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[37]  R. Landauer,et al.  Spatial variation of currents and fields due to localized scatterers in metallic conduction , 1988, IBM J. Res. Dev..