Millimeter-wave to near-terahertz sensors based on reversible insulator-to-metal transition in VO2

[1]  H. Inokawa,et al.  Responsivity and NEP Improvement of Terahertz Microbolometer by High-Impedance Antenna , 2022, Sensors.

[2]  Xiaomu Wang,et al.  Highly Sensitive and Ultra-Broadband VO2(B) Photodetector Dominated by Bolometric Effect. , 2021, Nano letters.

[3]  Wei Zhou,et al.  Ultrabroadband Tellurium Photoelectric Detector from Visible to Millimeter Wave , 2021, Advanced science.

[4]  Kestutis Ikamas,et al.  Sensitivity of Field-Effect Transistor-Based Terahertz Detectors , 2021, Sensors.

[5]  Chan Park,et al.  Selective growth and texturing of VO2(B) thin films for high-temperature microbolometers , 2020 .

[6]  T. Taniguchi,et al.  Tunnel field-effect transistors for sensitive terahertz detection , 2020, Nature Communications.

[7]  N. Ghalichechian,et al.  Multiphysics simulation of hypersensitive microbolometer sensor using vanadium dioxide and air suspension for millimeter wave imaging , 2020, Microsystem Technologies.

[8]  M. Rozenberg,et al.  Non-thermal resistive switching in Mott insulator nanowires , 2020, Nature Communications.

[9]  Adrian M. Ionescu,et al.  Scaled resistively-coupled VO2 oscillators for neuromorphic computing , 2020 .

[10]  A. Ferrari,et al.  HBN-Encapsulated, Graphene-based, Room-temperature Terahertz Receivers, with High Speed and Low Noise. , 2020, Nano letters.

[11]  M. Shur,et al.  Sub-terahertz FET detector with self-assembled Sn-nanothreads , 2019, Journal of Physics D: Applied Physics.

[12]  H. Wong,et al.  Localized Triggering of the Insulator-Metal Transition in VO2 Using a Single Carbon Nanotube. , 2019, ACS nano.

[13]  N. Hiromoto,et al.  Performance improvement of on-chip integrable terahertz microbolometer arrays using nanoscale meander titanium thermistor , 2019, Journal of Applied Physics.

[14]  B. Salski,et al.  Measurements of the responsivity of FET‐based detectors of sub‐THz radiation , 2019, Opto-Electronics Review.

[15]  P. Huggard,et al.  Room temperature ultrafast InGaAs Schottky diode based detectors for terahertz spectroscopy , 2019, Infrared Physics & Technology.

[16]  Igal Brener,et al.  Terahertz Detection with Perfectly-Absorbing Photoconductive Metasurface. , 2019, Nano letters.

[17]  Kenji Watanabe,et al.  Fast and Sensitive Terahertz Detection Using an Antenna-Integrated Graphene pn Junction. , 2019, Nano letters.

[18]  Jyrki Lappalainen,et al.  Neuromorphic thermal-electric circuits based on phase-change VO2 thin-film memristor elements , 2019, Journal of Applied Physics.

[19]  P. K. Basu,et al.  Antenna coupled graphene-FET as ultra-sensitive room temperature broadband THz detector , 2018, AIP Advances.

[20]  S.-Y. Choi,et al.  Isostructural metal-insulator transition in VO2 , 2018, Science.

[21]  Kestutis Ikamas,et al.  Silicon Field Effect Transistor as the Nonlinear Detector for Terahertz Autocorellators , 2018, Sensors.

[22]  T. Pakizeh,et al.  Interaction of electromagnetic waves with VO2 nanoparticles and films in optical and millimetre wave ranges: Prospective for nano-photonics, nano-antennas, and sensors , 2018, Journal of Physics: Conference Series.

[23]  Y. Kawano,et al.  Ge-Core/a-Si-Shell Nanowire-Based Field-Effect Transistor for Sensitive Terahertz Detection , 2018, Photonics.

[24]  Jun Yan,et al.  Asymmetric Two-Terminal Graphene Detector for Broadband Radiofrequency Heterodyne- and Self-Mixing. , 2018, Nano letters.

[25]  Sean N. Brennan,et al.  Bridging the gap between sensor noise modeling and sensor characterization , 2018 .

[26]  I. Grigorieva,et al.  Dual origin of room temperature sub-terahertz photoresponse in graphene field effect transistors , 2017, 1712.02144.

[27]  T. Murphy,et al.  Ultra-broadband photodetectors based on epitaxial graphene quantum dots , 2017, nano Online.

[28]  Stefano Pelli,et al.  THz Pyro-Optical Detector Based on LiNbO3 Whispering Gallery Mode Microdisc Resonator , 2017, Sensors.

[29]  Nezih Tolga Yardimci,et al.  High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays , 2016, Scientific Reports.

[30]  C. Ruan,et al.  The nature of photoinduced phase transition and metastable states in vanadium dioxide , 2016, Scientific Reports.

[31]  L. Fan,et al.  Infrared Response and Optoelectronic Memory Device Fabrication Based on Epitaxial VO2 Film. , 2016, ACS applied materials & interfaces.

[32]  P. Nouvel,et al.  Wide modulation bandwidth terahertz detection in 130 nm CMOS technology , 2016 .

[33]  Jr.,et al.  Temperature and electric field induced metal-insulator transition in atomic layer deposited VO 2 thin films , 2016, 1602.06340.

[34]  Thomas L. Bougher,et al.  A carbon nanotube optical rectenna. , 2015, Nature nanotechnology.

[35]  R. Jarecki,et al.  Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode. , 2015, Nature nanotechnology.

[36]  Xiqu Chen,et al.  Resistance hysteresis loop characteristic analysis of VO2 thin film for high sensitive microbolometer , 2015 .

[37]  Hong Wang,et al.  Roles of grain boundaries on the semiconductor to metal phase transition of VO2 thin films , 2015 .

[38]  W. Knap,et al.  Silicon junctionless field effect transistors as room temperature terahertz detectors , 2015 .

[39]  Suman Datta,et al.  Quantitative mapping of phase coexistence in Mott-Peierls insulator during electronic and thermally driven phase transition. , 2015, ACS nano.

[40]  Charles T Rettner,et al.  Subnanosecond incubation times for electric-field-induced metallization of a correlated electron oxide. , 2014, Nature nanotechnology.

[41]  T. Zwick,et al.  Wireless sub-THz communication system with high data rate , 2013, Nature Photonics.

[42]  Xin Zhang,et al.  Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial , 2012, Nature.

[43]  Hidekazu Tanaka,et al.  Multistate Memory Devices Based on Free‐standing VO2/TiO2 Microstructures Driven by Joule Self‐Heating , 2012, Advanced materials.

[44]  Roman V. Kruzelecky,et al.  Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications , 2011 .

[45]  S. Ramanathan,et al.  Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions , 2011 .

[46]  A. Crunteanu,et al.  Voltage- and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis , 2010, Science and technology of advanced materials.

[47]  Gokul Gopalakrishnan,et al.  On the triggering mechanism for the metal–insulator transition in thin film VO2 devices: electric field versus thermal effects , 2009, Journal of Materials Science.

[48]  V. G. Malyarov,et al.  Figures of merit and optimization of a VO 2 microbolometer with strong electrothermal feedback , 2008 .

[49]  J. S. Lee,et al.  Electric-pulse-induced local conducting area and joule heating effect in VO2/Al2O3 films , 2008 .

[50]  A. Crunteanu,et al.  rf-microwave switches based on reversible semiconductor-metal transition of VO2 thin films synthesized by pulsed-laser deposition , 2007 .

[51]  J. S. Lee,et al.  Microspectroscopic detection of local conducting areas generated by electric-pulse-induced phase transition in VO2 films , 2007 .

[52]  Changhong Chen,et al.  Optical phonons assisted infrared absorption in VO2 based bolometer , 2007 .

[53]  S. Yun,et al.  Temperature dependence of the first-order metal-insulator transition in VO2 and programmable critical temperature sensor , 2006, cond-mat/0609033.

[54]  G. S. Deep,et al.  Modeling and performance of vanadium-oxide transition edge microbolometers , 2004 .

[55]  Shao-Wei Wang,et al.  Properties of VO2 thin film prepared with precursor VO(acac)2 , 2004 .

[56]  J. Duchene,et al.  Filamentary Conduction in VO2 Coplanar Thin‐Film Devices , 1971 .

[57]  L. Filippenko,et al.  THz and Security Applications, Detectors, Sources and Associated Electronics for THz Applications, Chapter 6 Terahertz Imaging System Based on Superconducting Heterodyne Integrated Receiver , 2014 .