Abstract: A numerical model that calculates bone apposition and resorption around a tooth root on the basis of bone remodeling theories was developed to simulate orthodontic tooth movements. The model was used to calculate different kinds of orthodontic tooth movements, that were then compared with the expected movements based on clinical experience. For simulation of the movements the root of a canine was modeled in an idealized way in the form of an elliptical paraboloid and was processed with a finite element program. The finite element model was loaded with defined force systems. Two model assumptions were used to calculate the bone remodeling process. The mechanical loads firstly in the periodontal ligament and secondly in the alveolar bone were taken to simulate the following tooth movements: 1. mesial tipping around the center of resistance (force system at the bracket: isolated torque MY = Nmm), 2. Rotation around the long axis of the tooth (MZ = 5 Nmm), 3. uncontrolled tipping around the root tip (FX = 1 N, MZ = 5 Nmm), 4. canine retraction (FX = 1 N, MY = −9.5 Nmm, MZ = 5 Nmm), 5. and 6. extrusion/intrusion (FZ = ±0.5 N, MX = ±2.5 Nmm). Comparison with clinical experience was performed by calculating the orthodontic tooth movements based on the assumption of a fixed position of the center of resistance.It could be demonstrated that the numerical model of orthodontic bone remodeling can be used to calculate orthodontic tooth movements. However, the results are strongly dependent on the model assumptions. The model simulating the bone remodeling on the basis of the loading of the periodontal ligament delivers results that are in very good accordance with the biomechanical assumptions of the position of the center of resistance. However, marked side effects occurned with the second model, especially in the simulations of uncontrolled tipping, translation and intrusion/extrusion. Clinically, these side effects cannot be observed.Zusammenfassung: Für die Simulation orthodontischer Zahnbewegungen wurde ein numerisches Modell entwickelt, das die Knochenumbauprozesse um die Zahnwurzel auf der Grundlage sogenannter Bone-Remodeling-Theorien berechnet. Dieses Modell wurde eingesetzt, um verschiedene Arten geplanter Zahnbewegungen zu berechnen, die mit den klinisch zu erwartenden Ergebnissen verglichen wurden. Zur Simulation der Bewegung wurde die Wurzel eines Eckzahns idealisiert in Form eines elliptischen Paraboloids dargestellt und in ein Finite-Elemente-Programm eingelesen. Das Finite-Elemente-Modell wurde mit definierten Kraftsystemen belastet. In zwei Modellannahmen wurden entweder die mechanischen Belastungen 1. des paradontalen Ligaments oder 2. des Knochens verwendet, um den Knochenumbau um die Zahnwurzel bei folgenden Bewegungen zu simulieren: 1. Mesialkippung um das Widerstandszentrum (Kraftsystem am Bracket: reines Drehmoment von MY = 5 Nmm), 2. Rotation um die Zahnachse (MZ = 5 Nmm), 3. unkontrollierte Kippung um die Wurzelspitze (FX = 1 N, MZ = 5 Nmm), 4. Eckzahnretraktion (FX = 1 N, MY = −9,5 Nmm, MZ = 5 Nmm), 5. Und 6. Extrusion/Intrusion (FZ = ±0,5 N, MX = ±2,5 Nmm). Zum Vergleich mit klinischen Erfahrungen wurden die Zahnbewegungen auch aufgrund der Annahme eines festen Widerstandszentrums eines Eckzahns berechnet. Es zeigte sich, dass mit dem numerischen Modell des orthodontischen Knochenumbaus die Vorausberechnung geplanter Behandlungsschritte möglich ist. Die Ergebnisse sind jedoch stark abhängig von den Modellannahmen. Das Modell, das den Knochenumbau auf der Grundlage der Belastungen des Desmodonts simuliert, zeigte Ergebnisse, die mit den biomechanischen Annahmen über die Lage des Widerstandszentrums sehr gut übereinstimmten. Dagegen traten insbesondere bei der unkontrollierten Kippung, der Translation und der In-/Extrusion in den Simulationen mit dem zweiten Modell ausgeprägte Nebenwirkungen auf, die klinisch nicht zu beobachten sind.
[1]
J. Argüelles,et al.
Initial stress induced in periodontal tissue with diverse degrees of bone loss by an orthodontic force: tridimensional analysis by means of the finite element method.
,
1993,
American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.
[2]
G S Beaupré,et al.
An approach for time‐dependent bone modeling and remodeling—theoretical development
,
1990,
Journal of orthopaedic research : official publication of the Orthopaedic Research Society.
[3]
K G Heiple,et al.
The material properties of immature bone.
,
1982,
Journal of biomechanical engineering.
[4]
J. C. Simo,et al.
Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations.
,
1997,
Journal of biomechanics.
[5]
C J Burstone,et al.
Determination of Arbitrary Tooth Displacements
,
1978,
Journal of dental research.
[6]
J Middleton,et al.
A stress analysis of the periodontal ligament under various orthodontic loadings.
,
1991,
European journal of orthodontics.
[7]
R. B. Ashman,et al.
Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements.
,
1993,
Journal of biomechanics.
[8]
H Weinans,et al.
Trends of mechanical consequences and modeling of a fibrous membrane around femoral hip prostheses.
,
1990,
Journal of biomechanics.
[9]
H. Grootenboer,et al.
Adaptive bone-remodeling theory applied to prosthetic-design analysis.
,
1987,
Journal of biomechanics.
[10]
R. Pidaparti,et al.
A uniform strain criterion for trabecular bone adaptation: do continuum-level strain gradients drive adaptation?
,
1997,
Journal of biomechanics.
[11]
Y. Tamatsu.
A measurement of local elastic modulus of labial and buccal compact bone of human mandible.
,
1994
.
[12]
C Bourauel,et al.
An experimental apparatus for the simulation of three-dimensional movements in orthodontics.
,
1992,
Journal of biomedical engineering.
[13]
S. Cowin,et al.
Bone remodeling I: theory of adaptive elasticity
,
1976
.
[14]
C Bourauel,et al.
Determination of the centre of resistance in an upper human canine and idealized tooth model.
,
1999,
European journal of orthodontics.
[15]
D. Carter.
Mechanical loading history and skeletal biology.
,
1987,
Journal of biomechanics.
[16]
G Rau,et al.
Measuring system for in vivo recording of force systems in orthodontic treatment-concept and analysis of accuracy.
,
1999,
Journal of biomechanics.
[17]
阿部 博之,et al.
Data book on mechanical properties of living cells, tissues, and organs
,
1996
.
[18]
R J Nikolai,et al.
Centers of rotation for combined vertical and transverse tooth movements.
,
1976,
American journal of orthodontics.
[19]
J. W. Schweiker,et al.
Investigation of root-periodontium interface stresses and displacements for orthodontic application
,
1972
.
[20]
I C Howard,et al.
The Effects of Enamel Anisotropy on the Distribution of Stress in a Tooth
,
1993,
Journal of dental research.
[21]
C J Burstone,et al.
Patterns of initial tooth displacements associated with various root lengths and alveolar bone heights.
,
1991,
American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.