1 A soft computing based method for detecting lifetime building thermal insulation failures

The detection of thermal insulation failures in buildings in operation responds to the challenge of improving building energy efficiency. This multidisciplinary study presents a novel four-step soft computing knowledge identification model called IKBIS to perform thermal insulation failure detection. It proposes the use of Exploratory Projection Pursuit methods to study the relation between input and output variables and data dimensionality reduction. It also applies system identification theory and neural networks for modeling the thermal dynamics of the building. Finally, the novel model is used to predict dynamic thermal biases, and two real cases of study as part of its empirical validation.

[1]  Sheng Chen,et al.  Representations of non-linear systems: the NARMAX model , 1989 .

[2]  Sankaran Mahadevan,et al.  Bayesian wavelet packet denoising for structural system identification , 2007 .

[3]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[4]  Hongxing Yang,et al.  Investigation on the thermal performance of different lightweight roofing structures and its effect on space cooling load , 2009 .

[5]  Francisco Rodríguez,et al.  Adaptive hierarchical control of greenhouse crop production , 2008 .

[6]  Biao Huang,et al.  System Identification , 2000, Control Theory for Physicists.

[7]  Ian F. C. Smith,et al.  Data mining techniques for improving the reliability of system identification , 2005, Adv. Eng. Informatics.

[8]  Slobodan Ribaric,et al.  A knowledge-based system for the non-destructive diagnostics of façade isolation using the information fusion of visual and IR images , 2009, Expert Syst. Appl..

[9]  Dias Haralambopoulos,et al.  Assessing the thermal insulation of old buildings—The need for in situ spot measurements of thermal resistance and planar infrared thermography , 1998 .

[10]  Babak Hassibi,et al.  Second Order Derivatives for Network Pruning: Optimal Brain Surgeon , 1992, NIPS.

[11]  Alan J. Laub,et al.  Control System Toolbox User''s Guide , 1990 .

[12]  J. Schoukens,et al.  Improved approximate identification of nonlinear systems , 2004, Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510).

[13]  Emilio Corchado,et al.  Maximum likelihood Hebbian rules , 2002, ESANN.

[14]  Hojjat Adeli,et al.  Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy Systems , 1994 .

[15]  Gail D. Baura,et al.  Nonlinear System Identification , 2002 .

[16]  Ganapati Panda,et al.  Development of efficient identification scheme for nonlinear dynamic systems using swarm intelligence techniques , 2010, Expert Syst. Appl..

[17]  H. Sebastian Seung,et al.  The Rectified Gaussian Distribution , 1997, NIPS.

[18]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[19]  Zyad Shaaban,et al.  Data Mining: A Preprocessing Engine , 2006 .

[20]  Jonas Sjöberg,et al.  Neural networks for modelling and control of dynamic systems, M. Nørgaard, O. Ravn, N. K. Poulsen and L. K. Hansen, Springer, London, 2000, xiv+246pp. , 2001 .

[21]  Chia-Ju Wu,et al.  Identification of MIMO systems using radial basis function networks with hybrid learning algorithm , 2009, Appl. Math. Comput..

[22]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[23]  Lotfi A. Zadeh,et al.  Soft computing and fuzzy logic , 1994, IEEE Software.

[24]  Cengiz Kahraman,et al.  A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models: A comparative analysis , 2009, Expert Syst. Appl..

[25]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[26]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[27]  B. Wahlberg System identification using Laguerre models , 1991 .

[28]  Yves Rolain,et al.  Fast approximate identification of nonlinear systems , 2003, Autom..

[29]  Euntai Kim,et al.  A genetic feature weighting scheme for pattern recognition , 2007, Integr. Comput. Aided Eng..

[30]  Jerzy W. Grzymala-Busse,et al.  Handling Missing Attribute Values in Preterm Birth Data Sets , 2005, RSFDGrC.

[31]  Liwei Tian,et al.  Evaluation on energy and thermal performance for residential envelopes in hot summer and cold winter zone of China , 2009 .

[32]  O. Nelles Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models , 2000 .

[33]  Jitender S. Deogun,et al.  Towards Missing Data Imputation: A Study of Fuzzy K-means Clustering Method , 2004, Rough Sets and Current Trends in Computing.

[34]  Kamal C. Sarma,et al.  FUZZY GENETIC ALGORITHM FOR OPTIMIZATION OF STEEL STRUCTURES , 2000 .

[35]  Daw-Tung Lin,et al.  Integrating a mixed-feature model and multiclass support vector machine for facial expression recognition , 2009, Integr. Comput. Aided Eng..

[36]  Hojjat Adeli,et al.  Case-Based Reasoning for Converting Working Stress Design-Based Bridge Ratings to Load Factor Design-Based Ratings , 2005 .

[37]  José Ramón Villar,et al.  A Thermodynamical Model Study for an Energy Saving Algorithm , 2009, HAIS.

[38]  Hojjat Adeli,et al.  Case-based reasoning in steel bridge engineering , 2005, Knowl. Based Syst..

[39]  Huan Liu,et al.  Toward integrating feature selection algorithms for classification and clustering , 2005, IEEE Transactions on Knowledge and Data Engineering.

[40]  Gustavo E. A. P. A. Batista,et al.  An analysis of four missing data treatment methods for supervised learning , 2003, Appl. Artif. Intell..

[41]  Agnar Aamodt,et al.  Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches , 1994, AI Commun..

[42]  Lennart Ljung,et al.  On-line identification and adaptive trajectory tracking for nonlinear stochastic continuous time systems using differential neural networks , 2001, Autom..

[43]  Hojjat Adeli,et al.  Dynamic Wavelet Neural Network for Nonlinear Identification of Highrise Buildings , 2005 .

[44]  José Ramón Villar,et al.  A fuzzy logic based efficient energy saving approach for domestic heating systems , 2009, Integr. Comput. Aided Eng..

[45]  Anne Cambon-Thomsen,et al.  Handling missing values in population data: consequences for maximum likelihood estimation of haplotype frequencies , 2004, European Journal of Human Genetics.

[46]  Shashi Shekhar,et al.  Geospatial Analysis , 2008, Encyclopedia of GIS.

[47]  R. Fletcher Practical Methods of Optimization , 1988 .

[48]  Emilio Corchado,et al.  Maximum and Minimum Likelihood Hebbian Learning for Exploratory Projection Pursuit , 2002, ICANN.

[49]  Qingquan Wu,et al.  View invariant head recognition by Hybrid PCA based reconstruction , 2008, Integr. Comput. Aided Eng..

[50]  R. Palmer,et al.  , Introduction to the Theory of Neural Computation 1 , 2007 .

[51]  Lars Kai Hansen Controlled Growth of Cascade Correlation Nets , 1994 .

[52]  Taiho Koh,et al.  Second-order Volterra filtering and its application to nonlinear system identification , 1985, IEEE Trans. Acoust. Speech Signal Process..

[53]  Constantinos A. Balaras,et al.  Infrared thermography for building diagnostics , 2002 .

[54]  Bart De Moor,et al.  N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems , 1994, Autom..

[55]  Francisco Herrera,et al.  Genetic fuzzy systems: taxonomy, current research trends and prospects , 2008, Evol. Intell..

[56]  Karl Perusich,et al.  Using fuzzy cognitive maps to identify multiple causes in troubleshooting systems , 2008, Integr. Comput. Aided Eng..

[57]  Emilio Corchado,et al.  Connectionist Techniques For The Identification And Suppression Of Interfering Underlying Factors , 2003, Int. J. Pattern Recognit. Artif. Intell..

[58]  Franklin A. Graybill,et al.  Introduction to The theory , 1974 .

[59]  Kamal C. Sarma Fuzzy discrete multicriteria cost optimization of steel structures using genetic algorithm , 2000 .

[60]  Xiaoou Li,et al.  Online fuzzy modeling with structure and parameter learning , 2009, Expert Syst. Appl..

[61]  John W. Tukey,et al.  A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.

[62]  H. Adeli,et al.  Dynamic Fuzzy Wavelet Neural Network Model for Structural System Identification , 2006 .

[63]  José Ramón Villar,et al.  Minimizing Energy Consumption in Heating Systems under Uncertainty , 2008, HAIS.

[64]  Rafael E. Banchs,et al.  A neural stochastic multiscale optimization framework for sensor-based parameter estimation , 2007, Integr. Comput. Aided Eng..

[65]  Naresh N. Nandola,et al.  Hybrid system identification using a structural approach and its model based control : An experimental validation , 2009 .

[66]  Masud H. Chowdhury,et al.  Noise separation in analog integrated circuits using independent component analysis technique , 2008, Integr. Comput. Aided Eng..

[67]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[68]  Hojjat Adeli,et al.  Principal Component Analysis-Enhanced Cosine Radial Basis Function Neural Network for Robust Epilepsy and Seizure Detection , 2008, IEEE Transactions on Biomedical Engineering.

[69]  Asim Karim,et al.  CBR Model for Freeway Work Zone Traffic Management , 2003 .