Averaging theorems for conservative systems and the weakly compressible Euler equations

Abstract A generic averaging theorem is proven for systems of ODEs with two-time scales that cannot be globally transformed into the usual action-angle variable normal form for such systems. This theorem is shown to apply to certain Fourier-space truncations of the non-isentropic slightly compressible Euler equations of fluid mechanics. For the full Euler equations, we derive formally the generic limit equations and analyze some of their properties. In the one-dimensional case, we prove a generic converic convergence result for the full Euler equations, analogous to the result for ODEs. By making use of special properties of the one-dimensional equations, we prove convergence to the solution of a more complicated set of averaged equations when the genericity assumptions fail.

[1]  S. Schochet Fast Singular Limits of Hyperbolic PDEs , 1994 .

[2]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[3]  S. Schochet,et al.  Trilinear resonant interactions of semilinear hyperbolic waves , 1998 .

[4]  S. Łojasiewicz Ensembles semi-analytiques , 1965 .

[5]  A. Majda,et al.  Compressible and incompressible fluids , 1982 .

[6]  A. Majda,et al.  Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .

[7]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[8]  P. Gérard Microlocal defect measures , 1991 .

[9]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[10]  S. Schochet Asymptotics for symmetric hyperbolic systems with a large parameter , 1988 .

[11]  S. Schochet The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit , 1986 .

[12]  G. Folland Introduction to Partial Differential Equations , 1976 .

[13]  Tosio Kato Perturbation theory for linear operators , 1966 .

[14]  Hiroshi Isozaki,et al.  Singular limits for the compressible Euler equation in an exterior domain , 1986 .

[15]  H. Isozaki Singular limits for the compressible Euler equation in an exterior domain. II. Bodies in a uniform flow , 1989 .

[16]  P. Gérard,et al.  Mesures semi-classiques et croisement de modes , 2000 .

[17]  S. Schochet,et al.  The Incompressible Limit of the Non-Isentropic Euler Equations , 2001 .

[18]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[19]  A. Joye Proof of the Landau–Zener formula , 1994 .

[20]  G. Hagedorn Proof of the Landau-Zener formula in an adiabatic limit with small eigenvalue gaps , 1991 .

[21]  Hiroshi Isozaki,et al.  Wave operators and the incompressible limit of the compressible Euler equation , 1987 .

[22]  S. Ukai The incompressible limit and the initial layer of the compressible Euler equation , 1986 .

[23]  Karen K. Uhlenbeck Generic Properties of Eigenfunctions , 1976 .

[24]  K. Asano On the incompressible limit of the compressible Euler equation , 1987 .