Pattern Classification Based on Self-Organizing Feature Mapping Neural Network

Traditional pattern classification methods are not always efficient because sample data sets are sometimes incomplete and there are exceptions and counter examples. In this paper, SOFM neural network is applied in pattern classification of two-dimensional vectors after analysis of its structure and algorithm. The method to establish SOFM network via MATLAB7.0 is introduced before the network is applied to classify two-dimensional vectors. The adjustment process of weight vectors together with classification performance of SOFM model are also tested in the condition of different number of training steps. The simulation results show that the classification approach based on SOFM model is effective because of its fast speed, high accuracy and strong generalization ability.