Purkinje neuron Ca2+ influx reduction rescues ataxia in SCA28 model.

Spinocerebellar ataxia type 28 (SCA28) is a neurodegenerative disease caused by mutations of the mitochondrial protease AFG3L2. The SCA28 mouse model, which is haploinsufficient for Afg3l2, exhibits a progressive decline in motor function and displays dark degeneration of Purkinje cells (PC-DCD) of mitochondrial origin. Here, we determined that mitochondria in cultured Afg3l2-deficient PCs ineffectively buffer evoked Ca²⁺ peaks, resulting in enhanced cytoplasmic Ca²⁺ concentrations, which subsequently triggers PC-DCD. This Ca²⁺-handling defect is the result of negative synergism between mitochondrial depolarization and altered organelle trafficking to PC dendrites in Afg3l2-mutant cells. In SCA28 mice, partial genetic silencing of the metabotropic glutamate receptor mGluR1 decreased Ca²⁺ influx in PCs and reversed the ataxic phenotype. Moreover, administration of the β-lactam antibiotic ceftriaxone, which promotes synaptic glutamate clearance, thereby reducing Ca²⁺ influx, improved ataxia-associated phenotypes in SCA28 mice when given either prior to or after symptom onset. Together, the results of this study indicate that ineffective mitochondrial Ca²⁺ handling in PCs underlies SCA28 pathogenesis and suggest that strategies that lower glutamate stimulation of PCs should be further explored as a potential treatment for SCA28 patients.

[1]  E. Rugarli,et al.  Partial deletion of AFG3L2 causing spinocerebellar ataxia type 28 , 2014, Neurology.

[2]  Katherine R. Smith,et al.  Autosomal-recessive congenital cerebellar ataxia is caused by mutations in metabotropic glutamate receptor 1. , 2012, American journal of human genetics.

[3]  I. Bezprozvanny,et al.  Deranged Calcium Signaling in Purkinje Cells and Pathogenesis in Spinocerebellar Ataxia 2 (SCA2) and Other Ataxias , 2012, The Cerebellum.

[4]  D. Haines,et al.  Ca2+ Signaling in Cerebellar Purkinje Neurons—Editorial , 2012, The Cerebellum.

[5]  S. Campello,et al.  Mitochondrial Dynamics in Cancer and Neurodegenerative and Neuroinflammatory Diseases , 2012, International journal of cell biology.

[6]  T. Pozzan,et al.  Mitochondrial Ca2+ homeostasis: mechanism, role, and tissue specificities , 2012, Pflügers Archiv - European Journal of Physiology.

[7]  L. Scorrano,et al.  Respiratory dysfunction by AFG3L2 deficiency causes decreased mitochondrial calcium uptake via organellar network fragmentation , 2012, Human molecular genetics.

[8]  M. Duchen Mitochondria, calcium-dependent neuronal death and neurodegenerative disease , 2012, Pflügers Archiv - European Journal of Physiology.

[9]  E. Barrett,et al.  Mitochondria in motor nerve terminals: function in health and in mutant superoxide dismutase 1 mouse models of familial ALS , 2011, Journal of bioenergetics and biomembranes.

[10]  Anthony Sandler,et al.  Whole-Exome Sequencing Identifies Homozygous AFG3L2 Mutations in a Spastic Ataxia-Neuropathy Syndrome Linked to Mitochondrial m-AAA Proteases , 2011, PLoS genetics.

[11]  Zuxin Chen,et al.  pUNISHER: a high-level expression cassette for use with recombinant viral vectors for rapid and long term in vivo neuronal expression in the CNS. , 2011, Journal of neurophysiology.

[12]  A. Dürr,et al.  Missense mutations in the AFG3L2 proteolytic domain account for ∼1.5% of European autosomal dominant cerebellar ataxias , 2010, Human mutation.

[13]  I. Bezprozvanny,et al.  Deranged Calcium Signaling in Purkinje Cells and Pathogenesis in Spinocerebellar Ataxia 2 (SCA2) and Other Ataxias , 2010, The Cerebellum.

[14]  P. Plevani,et al.  Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28 , 2010, Nature Genetics.

[15]  P. Bauer,et al.  Early onset and slow progression of SCA28, a rare dominant ataxia in a large four-generation family with a novel AFG3L2 mutation , 2010, European Journal of Human Genetics.

[16]  E. Rugarli,et al.  Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1 , 2009, The Journal of cell biology.

[17]  D. Chan,et al.  Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases , 2009, Human molecular genetics.

[18]  G. Casari,et al.  Haploinsufficiency of AFG3L2, the Gene Responsible for Spinocerebellar Ataxia Type 28, Causes Mitochondria-Mediated Purkinje Cell Dark Degeneration , 2009, The Journal of Neuroscience.

[19]  J. Guénet,et al.  The Mitochondrial Protease AFG3L2 Is Essential for Axonal Development , 2008, The Journal of Neuroscience.

[20]  E. Rugarli,et al.  OPA1 processing reconstituted in yeast depends on the subunit composition of the m-AAA protease in mitochondria. , 2007, Molecular biology of the cell.

[21]  J. McCaffery,et al.  Mitochondrial Fusion Protects against Neurodegeneration in the Cerebellum , 2007, Cell.

[22]  J. Strahlendorf,et al.  Involvement of calpain in AMPA‐induced toxicity to rat cerebellar Purkinje neurons , 2007, European journal of pharmacology.

[23]  T. Langer,et al.  Protein Degradation within Mitochondria: Versatile Activities of AAA Proteases and Other Peptidases , 2007, Critical reviews in biochemistry and molecular biology.

[24]  Valerio Conti,et al.  crv4, a mouse model for human ataxia associated with kyphoscoliosis caused by an mRNA splicing mutation of the metabotropic glutamate receptor 1 (Grm1). , 2006, International journal of molecular medicine.

[25]  A. Spada,et al.  Bergmann glia expression of polyglutamine-expanded ataxin-7 produces neurodegeneration by impairing glutamate transport , 2006, Nature Neuroscience.

[26]  K. Mihara,et al.  Regulation of mitochondrial morphology through proteolytic cleavage of OPA1 , 2006, The EMBO journal.

[27]  David Baker,et al.  Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. , 2006, Chemistry & biology.

[28]  A. Albanese,et al.  Synergistic Control of Protein Kinase Cγ Activity by Ionotropic and Metabotropic Glutamate Receptor Inputs in Hippocampal Neurons , 2006, The Journal of Neuroscience.

[29]  J. Rothstein,et al.  Spectrin mutations cause spinocerebellar ataxia type 5 , 2006, Nature Genetics.

[30]  E. Rugarli,et al.  The m-AAA Protease Defective in Hereditary Spastic Paraplegia Controls Ribosome Assembly in Mitochondria , 2005, Cell.

[31]  A. Sikorski,et al.  Spectrin and calpain: a ‘target’ and a ‘sniper’ in the pathology of neuronal cells , 2005, Cellular and Molecular Life Sciences CMLS.

[32]  P. Fisher,et al.  β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression , 2005, Nature.

[33]  R. Rizzuto,et al.  Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. , 2004, Molecular cell.

[34]  P. Brookes,et al.  Calcium, ATP, and ROS: a mitochondrial love-hate triangle. , 2004, American journal of physiology. Cell physiology.

[35]  J. Martinou,et al.  Ca2+ Homeostasis during Mitochondrial Fragmentation and Perinuclear Clustering Induced by hFis1*[boxs] , 2004, Journal of Biological Chemistry.

[36]  A. Ballabio,et al.  Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia , 2003, The Journal of cell biology.

[37]  Masao Ito The molecular organization of cerebellar long-term depression , 2002, Nature Reviews Neuroscience.

[38]  M. Rudin,et al.  Survival Signaling and Selective Neuroprotection Through Glutamatergic Transmission , 2002, Experimental Neurology.

[39]  Marcel Leist,et al.  Four deaths and a funeral: from caspases to alternative mechanisms , 2001, Nature Reviews Molecular Cell Biology.

[40]  J. García-Sancho,et al.  Control of secretion by mitochondria depends on the size of the local [Ca2+] after chromaffin cell stimulation , 2001, The European journal of neuroscience.

[41]  Toshihide Tabata,et al.  A reliable method for culture of dissociated mouse cerebellar cells enriched for Purkinje neurons , 2000, Journal of Neuroscience Methods.

[42]  E. Barrett,et al.  Stimulation-Evoked Increases in Cytosolic [Ca2+] in Mouse Motor Nerve Terminals Are Limited by Mitochondrial Uptake and Are Temperature-Dependent , 2000, The Journal of Neuroscience.

[43]  A. Beaudet,et al.  A new vector system with inducible E2a cell line for production of higher titer and safer adenoviral vectors. , 2000, Virology.

[44]  D Yanagihara,et al.  mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. , 2000, Science.

[45]  D. Friel,et al.  Dissection of Mitochondrial Ca2+ Uptake and Release Fluxes in Situ after Depolarization-Evoked [Ca2+]i Elevations in Sympathetic Neurons , 2000, The Journal of general physiology.

[46]  W. Neupert,et al.  The formation of respiratory chain complexes in mitochondria is under the proteolytic control of the m‐AAA protease , 1998, The EMBO journal.

[47]  J. Strahlendorf,et al.  Diazoxide and cyclothiazide convert AMPA-induced dark cell degeneration of Purkinje cells to edematous damage in the cerebellar slice , 1996, Brain Research.

[48]  G. Lynch,et al.  Induction of calpain-mediated spectrin fragments by pathogenic treatments in long-term hippocampal slices. , 1995, The Journal of pharmacology and experimental therapeutics.

[49]  C. Mason,et al.  Cell-cell interactions influence survival and differentiation of purified purkinje cells in vitro , 1994, Neuron.

[50]  A. Matilla-Dueñas Machado-Joseph disease and other rare spinocerebellar ataxias. , 2012, Advances in experimental medicine and biology.

[51]  E. Rugarli,et al.  Regulation of OPA 1 processing and mitochondrial fusion by mAAA protease isoenzymes and OMA 1 EHSES , 2009 .

[52]  E. Rugarli,et al.  OPA 1 Processing Reconstituted in Yeast Depends on the Subunit Composition of the mAAA Protease in Mitochondria , 2007 .

[53]  Marco Seri,et al.  SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-q11.2. , 2006, Brain : a journal of neurology.

[54]  C. Gellera,et al.  SCA 28 , a novel form of autosomal dominant cerebellar ataxia on chromosome 18 p 11 . 22 – q 11 . 2 , 2005 .

[55]  S. Kalsner,et al.  One trial learning in the mouse , 2004, Psychopharmacologia.

[56]  Philip Ng,et al.  Construction of first-generation adenoviral vectors. , 2002, Methods in molecular medicine.

[57]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[58]  R. Ravazzolo,et al.  crv 4 , a mouse model for human ataxia associated with kyphoscoliosis caused by an mRNA splicing mutation of the metabotropic glutamate receptor 1 ( Grm 1 ) , 2022 .