EXPERIMENTAL INVESTIGATION AND NON-LOCAL MODELLING OF THE THERMOMECHANICAL BEHAVIOUR OF REFRACTORY CONCRETE

*Department of Civil Engineering, Abbès Laghrour University, Khenchela 40000, Algeria **Laboratory of Non-Metallic Materials, Ferhat Abbas University Setif 1, Sétif 19000, Algeria ***Department of Civil Engineering, Abbès Laghrour University, Khenchela 40000, Algeria ****Mineral Processing and Environmental Laboratory, Department of Mines, Badji Mokhtar University, Annaba 23000, Algeria *****EMTO-ST Institute, CNRS/UFC/ENSMM/UTBM, Department of Applied Mechanics, Université Bourgogne Franche-Comté, 25000 Besancon, France ******Emergent Materials Research Unit, Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria *******University of Lyon, INSA-Lyon, MATEIS CNRS-UMR5510, 69621 Villeurbanne, France

[1]  E. Sotelino,et al.  Numerical modelling of the thermo-mechanical behaviour of refractory concrete lining , 2020 .

[2]  N. Kazemi Reasons for crack propagation and strength loss in refractory castables based on changes in their chemical compositions and micromorphologies with heating: special focus on the large blocks , 2019, Journal of Asian Ceramic Societies.

[3]  M. Hamidouche,et al.  Experimental characterisation and numerical simulation of the thermomechanical damage behaviour of kaolinitic refractory materials , 2018, Journal of the Australian Ceramic Society.

[4]  G. Fantozzi,et al.  Thermo-mechanical characterization of a silica-alumina refractory concrete based on calcined algerian kaolin , 2016 .

[5]  François P. Hamon,et al.  A new 3D damage model for concrete under monotonic, cyclic and dynamic loadings , 2015 .

[6]  M. Ruiz-Sandoval,et al.  An isotropic damage model to simulate collapse in reinforced concrete elements , 2014 .

[7]  Zhi Wang,et al.  Damage based constitutive model for predicting the performance degradation of concrete , 2014 .

[8]  Peter Grassl,et al.  CDPM2: A damage-plasticity approach to modelling the failure of concrete , 2013, 1307.6998.

[9]  M. Cervera,et al.  An orthotropic damage model for the analysis of masonry structures , 2013 .

[10]  G. Fantozzi,et al.  THERMOMECHANICAL CHARACTERIZATION OF A FIRE CLAY REFRACTORY MADE OF ALGERIAN KAOLIN , 2012 .

[11]  F. Dufour,et al.  Stress-based nonlocal damage model , 2011 .

[12]  E. Ouedraogo,et al.  Refractory concretes uniaxial compression behaviour under high temperature testing conditions , 2011 .

[13]  E. Ouedraogo,et al.  Experimental study of the thermo-mechanical behaviour of alumina-silicate refractory materials based on a mixture of Algerian kaolinitic clays , 2011 .

[14]  T. Chotard,et al.  Effect of thermal treatment on damage mechanical behaviour of refractory castables: Comparison between bauxite and andalusite aggregates , 2008 .

[15]  M. Boussuge Investigation of the thermomechanical properties of industrial refractories: the French programme PROMETHEREF , 2008, Journal of Materials Science.

[16]  Pedro P. Camanho,et al.  A continuum damage model for composite laminates: Part I - Constitutive model , 2007 .

[17]  C. Aksel The role of fine alumina and mullite particles on the thermomechanical behaviour of alumina–mullite refractory materials , 2002 .

[18]  G. Fantozzi,et al.  Room temperature quasi-brittle behaviour of an aluminous refractory concrete after firing , 2002 .

[19]  Yves Berthaud,et al.  Tensile behaviour of magnesia carbon refractories , 2000 .

[20]  S. Xia,et al.  A nonlocal damage theory , 1987 .

[21]  J. Mazars APPLICATION DE LA MECANIQUE DE L'ENDOMMAGEMENT AU COMPORTEMENT NON LINEAIRE ET A LA RUPTURE DU BETON DE STRUCTURE , 1984 .

[22]  Mohamed Salah Dimia,et al.  An experimental and numerical analysis of concrete walls exposed to fire , 2021 .

[23]  G. Ruiz,et al.  NUMERICAL ANALYSIS OF THE BEHAVIOUR OF NOTCHED SPECIMENS AT VARIOUS TESTING TEMPERATURES USING AN ELASTIC DAMAGE MODEL , 2013 .

[24]  Sanja Martinović,et al.  Cavitation resistance of refractory concrete: Influence of sintering temperature , 2013 .