Climate Sensitivity Distributions Dependence on the Possibility that Models Share Biases

Uncertainty about biases common across models and about unknown and unmodeled feedbacks is important for the tails of temperature change distributions and thus for climate risk assessments. This paper develops a hierarchical Bayes framework that explicitly represents these and other sources of uncertainty. It then uses models’ estimates of albedo, carbon cycle, cloud, and water vapor‐lapse rate feedbacks to generate posterior probability distributions for feedback strength and equilibrium temperature change. The posterior distributions are especially sensitive to prior beliefs about models’ shared structural biases: nonzero probability of shared bias moves some probability mass toward lower values for climate sensitivity even as it thickens the distribution’s positive tail. Obtaining additional models of these feedbacks would not constrain the posterior distributions as much as narrowing prior beliefs about shared biases or, potentially, obtaining feedback estimates having biases uncorrelated with those impacting climate models. Carbon dioxide concentrations may need to fall below current levels to maintain only a 10% chance of exceeding official 28C limits on global average temperature change.

[1]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[2]  L. Wasserman,et al.  The Selection of Prior Distributions by Formal Rules , 1996 .

[3]  R. Colman,et al.  Non-linear climate feedback analysis in an atmospheric general circulation model , 1997 .

[4]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[5]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[6]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[7]  R. Colman,et al.  A comparison of climate feedbacks in general circulation models , 2003 .

[8]  M. Marinacci,et al.  A Smooth Model of Decision Making Under Ambiguity , 2003 .

[9]  P. Cox,et al.  How positive is the feedback between climate change and the carbon cycle? , 2003 .

[10]  M. Collins,et al.  Quantifying the water vapour feedback associated with post-Pinatubo global cooling , 2004 .

[11]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[12]  M. Heimann,et al.  The vulnerability of the carbon cycle in the 21st century: an assessment of carbon-climate-human interactions , 2004 .

[13]  M E Borsuk,et al.  Uncertainty, imprecision, and the precautionary principle in climate change assessment. , 2005, Water science and technology : a journal of the International Association on Water Pollution Research.

[14]  G. Stephens Cloud Feedbacks in the Climate System: A Critical Review , 2005 .

[15]  Myles R. Allen,et al.  Constraining climate forecasts: The role of prior assumptions , 2005 .

[16]  K. Lorenz,et al.  Subsoil Organic Carbon Pool , 2005 .

[17]  X. Zhu,et al.  Concentration and detection of SARS coronavirus in sewage from Xiao Tang Shan Hospital and the 309th Hospital of the Chinese People's Liberation Army. , 2005, Water science and technology : a journal of the International Association on Water Pollution Research.

[18]  R. Schnur,et al.  Climate-carbon cycle feedback analysis: Results from the C , 2006 .

[19]  David R. Jones,et al.  How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS , 2005, Statistics in medicine.

[20]  S. Bony,et al.  How Well Do We Understand and Evaluate Climate Change Feedback Processes , 2006 .

[21]  M. Winton Surface Albedo Feedback Estimates for the AR4 Climate Models , 2006 .

[22]  J. Harte,et al.  Missing feedbacks, asymmetric uncertainties, and the underestimation of future warming , 2006 .

[23]  G. Hegerl,et al.  Climate sensitivity constrained by temperature reconstructions over the past seven centuries , 2006, Nature.

[24]  B. Soden,et al.  An Assessment of Climate Feedbacks in Coupled Ocean–Atmosphere Models , 2006 .

[25]  Stefan Van Dongen,et al.  Prior specification in Bayesian statistics: three cautionary tales. , 2006, Journal of theoretical biology.

[26]  J. Annan,et al.  Using multiple observationally‐based constraints to estimate climate sensitivity , 2006 .

[27]  J. Grandpeix,et al.  An Elicitation of the Dynamic Nature of Water Vapor Feedback in Climate Change Using a 1D Model. , 2006 .

[28]  M. Scheffer,et al.  Positive feedback between global warming and atmospheric CO2 concentration inferred from past climate change , 2006 .

[29]  Mark E. Borsuk,et al.  Robust Bayesian uncertainty analysis of climate system properties using Markov chain Monte Carlo methods , 2007 .

[30]  R. Betts,et al.  Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .

[31]  Andreas Hense,et al.  Hierarchical evaluation of IPCC AR4 coupled climate models with systematic consideration of model uncertainties , 2007 .

[32]  Christopher B. Field,et al.  Feedbacks of Terrestrial Ecosystems to Climate Change , 2007 .

[33]  P. Friedlingstein,et al.  What determines the magnitude of carbon cycle‐climate feedbacks? , 2007 .

[34]  Yiqi Luo Terrestrial Carbon-Cycle Feedback to Climate Warming , 2007 .

[35]  E. Guilyardi,et al.  A new feedback on climate change from the hydrological cycle , 2007 .

[36]  D. Archer Methane hydrate stability and anthropogenic climate change , 2007 .

[37]  G. Roe,et al.  Why Is Climate Sensitivity So Unpredictable? , 2007, Science.

[38]  Jim W. Hall,et al.  Probabilistic climate scenarios may misrepresent uncertainty and lead to bad adaptation decisions , 2007 .

[39]  Casper Labuschagne,et al.  Saturation of the Southern Ocean CO2 Sink Due to Recent Climate Change , 2007, Science.

[40]  Reto Knutti,et al.  The use of the multi-model ensemble in probabilistic climate projections , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[41]  M. Yoshimori,et al.  A Comparison of Climate Feedback Strength between CO2 Doubling and LGM Experiments , 2008 .

[42]  Brian J. Soden,et al.  Quantifying Climate Feedbacks Using Radiative Kernels , 2008 .

[43]  S. Hagemann,et al.  Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle , 2008 .

[44]  V. Masson‐Delmotte,et al.  Target atmospheric CO2: Where should humanity aim? , 2008, 0804.1126.

[45]  Roy W. Spencer,et al.  Potential Biases in Feedback Diagnosis from Observational Data: A Simple Model Demonstration , 2008 .

[46]  Marika M. Holland,et al.  Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss , 2008 .

[47]  Ping Yang,et al.  Water‐vapor climate feedback inferred from climate fluctuations, 2003–2008 , 2008 .

[48]  L. Mark Berliner,et al.  Bayesian Design and Analysis for Superensemble-Based Climate Forecasting , 2008 .

[49]  Gary W. Yohe,et al.  Managing the risks of climate thresholds: uncertainties and information needs , 2008 .

[50]  Reto Knutti,et al.  The equilibrium sensitivity of the Earth's temperature to radiation changes , 2008 .

[51]  Wolfgang Lucht,et al.  Tipping elements in the Earth's climate system , 2008, Proceedings of the National Academy of Sciences.

[52]  D. Nychka,et al.  Spatial Analysis to Quantify Numerical Model Bias and Dependence , 2008 .

[53]  S. E. Ahmed,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.

[54]  Reto Knutti,et al.  Should we believe model predictions of future climate change? , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[55]  Andrei P. Sokolov,et al.  Consequences of Considering Carbon–Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle , 2008 .

[56]  Pierre Friedlingstein,et al.  A Review of Uncertainties in Global Temperature Projections over the Twenty-First Century , 2008 .

[57]  G. Dickens,et al.  Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming , 2009 .

[58]  Terry V. Callaghan,et al.  Carbon respiration from subsurface peat accelerated by climate warming in the subarctic , 2009, Nature.

[59]  B. Mcavaney,et al.  Climate feedbacks under a very broad range of forcing , 2009 .

[60]  G. Roe,et al.  The Shape of Things to Come: Why Is Climate Change So Predictable? , 2009 .

[61]  J. Canadell,et al.  Soil organic carbon pools in the northern circumpolar permafrost region , 2009 .

[62]  N. Urban,et al.  Complementary observational constraints on climate sensitivity , 2009 .

[63]  Massimo Marinacci,et al.  Recursive smooth ambiguity preferences , 2009, J. Econ. Theory.

[64]  N. Meinshausen,et al.  Warming caused by cumulative carbon emissions towards the trillionth tonne , 2009, Nature.

[65]  Stephen C. Newbold,et al.  Climate Response Uncertainty and the Benefits of Greenhouse Gas Emissions Reductions , 2009 .

[66]  S. Solomon,et al.  Irreversible climate change due to carbon dioxide emissions , 2009, Proceedings of the National Academy of Sciences.

[67]  R. Howarth,et al.  Limitations of integrated assessment models of climate change , 2009 .

[68]  T. E. Osterkamp,et al.  The effect of permafrost thaw on old carbon release and net carbon exchange from tundra , 2009, Nature.

[69]  M. Kremer,et al.  The Two-Margin Problem in Insurance Markets , 2004, Review of Economics and Statistics.

[70]  M. Weitzman,et al.  On Modeling and Interpreting the Economics of Catastrophic Climate Change , 2009, The Review of Economics and Statistics.

[71]  G. Roe,et al.  Feedbacks, Timescales, and Seeing Red , 2009 .

[72]  Bruno Sansó,et al.  Joint projections of temperature and precipitation change from multiple climate models: a hierarchical Bayesian approach , 2009 .

[73]  H. Damon Matthews,et al.  The proportionality of global warming to cumulative carbon emissions , 2009, Nature.

[74]  A revised estimate of the processes contributing to global warming due to climate‐carbon feedback , 2009 .

[75]  J. Dufresne,et al.  Why climate sensitivity may not be so unpredictable , 2009 .

[76]  J. Gregory,et al.  Quantifying Carbon Cycle Feedbacks , 2009 .

[77]  M. Boykoff,et al.  Discursive stability meets climate instability: A critical exploration of the concept of ‘climate stabilization’ in contemporary climate policy , 2010 .

[78]  Reto Knutti,et al.  Challenges in Combining Projections from Multiple Climate Models , 2010 .

[79]  J. Annan,et al.  On the generation and interpretation of probabilistic estimates of climate sensitivity , 2011 .

[80]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .