The molecular basis of HIV capsid assembly—five years of progress

The assembly of HIV is relatively poorly investigated when compared with the process of virus entry. Yet a detailed understanding of the mechanism of assembly is fundamental to our knowledge of the complete life cycle of this virus and also has the potential to inform the development of new antiviral strategies. The repeated multiple interaction of the basic structural unit, Gag, might first appear to be little more than concentration dependent self‐assembly but the precise mechanisms emerging for HIV are far from simple. Gag interacts not only with itself but also with host cell lipids and proteins in an ordered and stepwise manner. It binds both the genomic RNA and the virus envelope protein and must do this at an appropriate time and place within the infected cell. The assembled virus particle must successfully release from the cell surface and, whilst being robust enough for transmission between hosts, must nonetheless be primed for rapid disassembly when infection occurs. Our current understanding of these processes and the domains of Gag involved at each stage is the subject of this review. Copyright © 2004 John Wiley & Sons, Ltd.

[1]  B. Gowen,et al.  Actin Associates with the Nucleocapsid Domain of the Human Immunodeficiency Virus Gag Polyprotein , 1999, Journal of Virology.

[2]  S. Fuller,et al.  Towards the structure of the human immunodeficiency virus: divide and conquer. , 1999, Current opinion in structural biology.

[3]  J. Culp,et al.  Characterization of HIV‐1 p24 self‐association using analytical affinity chromatography , 1992, Proteins.

[4]  O. Haffar,et al.  Characterization of human immunodeficiency virus type 1 Pr55gag membrane association in a cell-free system: requirement for a C-terminal domain. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. Canon,et al.  HIV type 1 Gag and nucleocapsid proteins: cytoskeletal localization and effects on cell motility. , 2001, AIDS research and human retroviruses.

[6]  M. Resh,et al.  Identification of a membrane-binding domain within the amino-terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids , 1994, Journal of virology.

[7]  S. Scarlata,et al.  Role of HIV-1 Gag domains in viral assembly. , 2003, Biochimica et biophysica acta.

[8]  L. Verplank,et al.  Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55Gag , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[9]  J. Paillart,et al.  Opposing Effects of Human Immunodeficiency Virus Type 1 Matrix Mutations Support a Myristyl Switch Model of Gag Membrane Targeting , 1999, Journal of Virology.

[10]  M. Whitt,et al.  Mutations in the PPPY Motif of Vesicular Stomatitis Virus Matrix Protein Reduce Virus Budding by Inhibiting a Late Step in Virion Release , 2000, Journal of Virology.

[11]  Daniel Thomas,et al.  Further evidence for hexagonal organization of HIV gag protein in prebudding assemblies and immature virus-like particles. , 1998, Journal of structural biology.

[12]  L. Ratner,et al.  Membrane binding of human immunodeficiency virus type 1 matrix protein in vivo supports a conformational myristyl switch mechanism , 1997, Journal of virology.

[13]  M. Resh,et al.  Localization of Human Immunodeficiency Virus Type 1 Gag and Env at the Plasma Membrane by Confocal Imaging , 2000, Journal of Virology.

[14]  B. Gowen,et al.  Cryo-electron microscopy reveals ordered domains in the immature HIV-1 particle , 1997, Current Biology.

[15]  I. Jones,et al.  Control of human immunodeficiency virus type-1 protease activity in insect cells expressing Gag-Pol rescues assembly of immature but not mature virus-like particles. , 2003, Virology.

[16]  J. Briggs,et al.  Structural organization of authentic, mature HIV‐1 virions and cores , 2003, The EMBO journal.

[17]  Xiao-Fang Yu,et al.  Formation of Virus Assembly Intermediate Complexes in the Cytoplasm by Wild-Type and Assembly-Defective Mutant Human Immunodeficiency Virus Type 1 and Their Association with Membranes , 1999, Journal of Virology.

[18]  P. Woodman,et al.  TSG101/Mammalian VPS23 and Mammalian VPS28 Interact Directly and Are Recruited to VPS4-induced Endosomes* , 2001, The Journal of Biological Chemistry.

[19]  Rebecca L Rich,et al.  Structure and functional interactions of the Tsg101 UEV domain , 2002, The EMBO journal.

[20]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[21]  E. Freed,et al.  Single amino acid changes in the human immunodeficiency virus type 1 matrix protein block virus particle production , 1994, Journal of virology.

[22]  Aaron Derdowski,et al.  Independent Segregation of Human Immunodeficiency Virus Type 1 Gag Protein Complexes and Lipid Rafts , 2003, Journal of Virology.

[23]  L. Ratner,et al.  Human immunodeficiency virus type 1 capsid formation in reticulocyte lysates , 1996, Journal of virology.

[24]  M. Summers,et al.  Structure of the N-terminal 283-residue fragment of the immature HIV-1 Gag polyprotein , 2002, Nature Structural Biology.

[25]  P. Bieniasz,et al.  Role of ESCRT-I in Retroviral Budding , 2003, Journal of Virology.

[26]  M. Wainberg,et al.  Characterization of a Putative α-Helix across the Capsid-SP1 Boundary That Is Critical for the Multimerization of Human Immunodeficiency Virus Type 1 Gag , 2002, Journal of Virology.

[27]  V. Vogt,et al.  Self-assembly in vitro of purified CA-NC proteins from Rous sarcoma virus and human immunodeficiency virus type 1 , 1995, Journal of virology.

[28]  J. Wills,et al.  Positionally independent and exchangeable late budding functions of the Rous sarcoma virus and human immunodeficiency virus Gag proteins , 1995, Journal of virology.

[29]  B. Gay,et al.  Human immunodeficiency virus type 1 MA deletion mutants expressed in baculovirus-infected cells: cis and trans effects on the Gag precursor assembly pathway , 1995, Journal of virology.

[30]  R. Hegde,et al.  A Multistep, ATP-dependent Pathway for Assembly of Human Immunodeficiency Virus Capsids in a Cell-free System , 1997, The Journal of cell biology.

[31]  M. Shibuya,et al.  In vitro processing of human immunodeficiency virus type 1 Gag virus-like particles. , 2000, Virology.

[32]  M. Resh,et al.  Kinetic Analysis of Human Immunodeficiency Virus Type 1 Assembly Reveals the Presence of Sequential Intermediates , 2000, Journal of Virology.

[33]  E. Freed,et al.  Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[34]  I. Jones,et al.  Roles of Matrix, p2, and N-Terminal Myristoylation in Human Immunodeficiency Virus Type 1 Gag Assembly , 2000, Journal of Virology.

[35]  Wesley I. Sundquist,et al.  Tsg101 and the Vacuolar Protein Sorting Pathway Are Essential for HIV-1 Budding , 2001, Cell.

[36]  S. Fuller,et al.  A conformational switch controlling HIV‐1 morphogenesis , 2000, The EMBO journal.

[37]  W. Sundquist,et al.  Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. , 1997, Science.

[38]  S. Cusack,et al.  Head‐to‐tail dimers and interdomain flexibility revealed by the crystal structure of HIV‐1 capsid protein (p24) complexed with a monoclonal antibody Fab , 1999, The EMBO journal.

[39]  D. Brown,et al.  Functions of lipid rafts in biological membranes. , 1998, Annual review of cell and developmental biology.

[40]  I. Jones,et al.  The molecular basis of HIV capsid assembly , 1998, Reviews in medical virology.

[41]  H. Kräusslich,et al.  Biochemical and Structural Analysis of Isolated Mature Cores of Human Immunodeficiency Virus Type 1 , 2000, Journal of Virology.

[42]  P. Spearman,et al.  Mapping and Characterization of the N-Terminal I Domain of Human Immunodeficiency Virus Type 1 Pr55Gag , 2000, Journal of Virology.

[43]  S. Scarlata,et al.  Role of the major homology region in assembly of HIV-1 Gag. , 2001, Biochemistry.

[44]  E. Freed,et al.  Relationship between Human Immunodeficiency Virus Type 1 Gag Multimerization and Membrane Binding , 2000, Journal of Virology.

[45]  D. Stuart,et al.  Crystal structure of SIV matrix antigen and implications for virus assembly , 1995, Nature.

[46]  A. Burny,et al.  Assembly of the matrix protein of simian immunodeficiency virus into virus-like particles. , 1993, Virology.

[47]  Carol Carter,et al.  Crystal structure of dimeric HIV-1 capsid protein , 1996, Nature Structural Biology.

[48]  Wesley I. Sundquist,et al.  Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein , 2002, Nature Structural Biology.

[49]  P. Stewart,et al.  Cryoelectron Microscopic Examination of Human Immunodeficiency Virus Type 1 Virions with Mutations in the Cyclophilin A Binding Loop , 1998, Journal of Virology.

[50]  J. Davoust,et al.  Tagging the human immunodeficiency virus gag protein with green fluorescent protein. Minimal evidence for colocalisation with actin. , 1999, Virology.

[51]  R. N. Harty,et al.  Late Domain Function Identified in the Vesicular Stomatitis Virus M Protein by Use of Rhabdovirus-Retrovirus Chimeras , 1999, Journal of Virology.

[52]  E. Freed,et al.  p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease , 1995, Journal of virology.

[53]  Bonnie L. Firestein,et al.  Identification of a host protein essential for assembly of immature HIV-1 capsids , 2002, Nature.

[54]  W. Sundquist,et al.  Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[55]  R. Gorelick,et al.  Interaction of the Human Immunodeficiency Virus Type 1 Nucleocapsid with Actin , 1999, Journal of Virology.

[56]  M. Linial,et al.  Efficient particle formation can occur if the matrix domain of human immunodeficiency virus type 1 Gag is substituted by a myristylation signal , 1994, Journal of virology.

[57]  E. Freed,et al.  Viral Late Domains , 2002, Journal of Virology.

[58]  C. Morrow,et al.  The nonmyristylated Pr160gag-pol polyprotein of human immunodeficiency virus type 1 interacts with Pr55gag and is incorporated into viruslike particles , 1992, Journal of virology.

[59]  B. Strack,et al.  Efficient Particle Production by Minimal Gag Constructs Which Retain the Carboxy-Terminal Domain of Human Immunodeficiency Virus Type 1 Capsid-p2 and a Late Assembly Domain , 2000, Journal of Virology.

[60]  W. Sundquist,et al.  Assembly and analysis of conical models for the HIV-1 core. , 1999, Science.

[61]  Aalok R. Singh,et al.  Effect of mutations in Gag on assembly of immature human immunodeficiency virus type 1 capsids in a cell-free system. , 2001, Virology.

[62]  O. W. Lindwasser,et al.  Multimerization of Human Immunodeficiency Virus Type 1 Gag Promotes Its Localization to Barges, Raft-Like Membrane Microdomains , 2001, Journal of Virology.

[63]  W. Sundquist,et al.  Biological Crystallography Structures of the Hiv-1 Capsid Protein Dimerization Domain at 2.6 a Ê Resolution , 2022 .

[64]  B. Gowen,et al.  Organization of Immature Human Immunodeficiency Virus Type 1 , 2001, Journal of Virology.

[65]  Deborah A. Brown,et al.  Structure and Function of Sphingolipid- and Cholesterol-rich Membrane Rafts* , 2000, The Journal of Biological Chemistry.

[66]  H. Kräusslich,et al.  N-Terminal Extension of Human Immunodeficiency Virus Capsid Protein Converts the In Vitro Assembly Phenotype from Tubular to Spherical Particles , 1998, Journal of Virology.

[67]  E. Barklis,et al.  Analysis of the Assembly Function of the Human Immunodeficiency Virus Type 1 Gag Protein Nucleocapsid Domain , 1998, Journal of Virology.

[68]  I. Jones,et al.  Distinct signals in human immunodeficiency virus type 1 Pr55 necessary for RNA binding and particle formation. , 1992, The Journal of general virology.

[69]  M. Mulligan,et al.  The matrix protein of HIV-1 is not sufficient for assembly and release of virus-like particles. , 1998, Virology.

[70]  R. N. Harty,et al.  A Proline-Rich Motif within the Matrix Protein of Vesicular Stomatitis Virus and Rabies Virus Interacts with WW Domains of Cellular Proteins: Implications for Viral Budding , 1999, Journal of Virology.

[71]  E. Freed,et al.  Role of the Gag Matrix Domain in Targeting Human Immunodeficiency Virus Type 1 Assembly , 2000, Journal of Virology.

[72]  Chin-Tien Wang,et al.  Analysis of Minimal Human Immunodeficiency Virus Type 1 gag Coding Sequences Capable of Virus-Like Particle Assembly and Release , 1998, Journal of Virology.

[73]  H. Gelderblom,et al.  Efficient HIV‐1 replication can occur in the absence of the viral matrix protein , 1998, The EMBO journal.

[74]  R. N. Harty,et al.  A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[75]  M. Resh,et al.  Human Immunodeficiency Virus Type 1 Protease Triggers a Myristoyl Switch That Modulates Membrane Binding of Pr55gag and p17MA , 1999, Journal of Virology.

[76]  J. Luban,et al.  Human Immunodeficiency Virus Type 1 Virion Density Is Not Determined by Nucleocapsid Basic Residues , 2000, Journal of Virology.

[77]  E. Hunter,et al.  A Proline-Rich Motif (PPPY) in the Gag Polyprotein of Mason-Pfizer Monkey Virus Plays a Maturation-Independent Role in Virion Release , 1998, Journal of Virology.

[78]  I. Jones,et al.  A molecular determinant of human immunodeficiency virus particle assembly located in matrix antigen p17 , 1995, Journal of virology.

[79]  W. Sundquist,et al.  Proteolytic refolding of the HIV‐1 capsid protein amino‐terminus facilitates viral core assembly , 1998, The EMBO journal.

[80]  E. Jacobs,et al.  Assembly and release of HIV-1 precursor Pr55 gag virus-like particles from recombinant baculovirus-infected insect cells , 1989, Cell.

[81]  Dzung H. Nguyen,et al.  Evidence for Budding of Human Immunodeficiency Virus Type 1 Selectively from Glycolipid-Enriched Membrane Lipid Rafts , 2000, Journal of Virology.

[82]  W. Sundquist,et al.  Crystal Structure of Human Cyclophilin A Bound to the Amino-Terminal Domain of HIV-1 Capsid , 1996, Cell.

[83]  J. Luban,et al.  Human Immunodeficiency Virus Type 1 Gag Polyprotein Multimerization Requires the Nucleocapsid Domain and RNA and Is Promoted by the Capsid-Dimer Interface and the Basic Region of Matrix Protein , 1999, Journal of Virology.

[84]  S. Emr,et al.  Ubiquitin-Dependent Sorting into the Multivesicular Body Pathway Requires the Function of a Conserved Endosomal Protein Sorting Complex, ESCRT-I , 2001, Cell.

[85]  S. Scarlata,et al.  Role of myristylation in HIV-1 Gag assembly. , 2003, Biochemistry.

[86]  Wei Zhang,et al.  Time course of Gag protein assembly in HIV-1-infected cells: a study by immunoelectron microscopy. , 2003, Virology.

[87]  S. Goff,et al.  The morphology of the immature HIV-1 virion. , 1997, Virology.

[88]  H. Issaq,et al.  Modulation of HIV-like particle assembly in vitro by inositol phosphates , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[89]  Wesley I. Sundquist,et al.  Image reconstructions of helical assemblies of the HIV-1 CA protein , 2022 .

[90]  H. Zentgraf,et al.  The spacer peptide between human immunodeficiency virus capsid and nucleocapsid proteins is essential for ordered assembly and viral infectivity , 1995, Journal of virology.

[91]  J. Canon,et al.  HIV-1 Gag protein associates with F-actin present in microfilaments. , 1996, Virology.

[92]  R. Hewson,et al.  Human Immunodeficiency Virus Type 1 Assembly and Lipid Rafts: Pr55gag Associates with Membrane Domains That Are Largely Resistant to Brij98 but Sensitive to Triton X-100 , 2003, Journal of Virology.

[93]  L. Dawson,et al.  The role of nucleocapsid of HIV-1 in virus assembly. , 1998, Virology.

[94]  G. Pauli,et al.  Fine structure of human immunodeficiency virus (HIV) and immunolocalization of structural proteins , 1987 .

[95]  E. Barklis,et al.  Assembly, processing, and infectivity of human immunodeficiency virus type 1 gag mutants , 1993, Journal of virology.

[96]  E. Freed,et al.  Plasma membrane rafts play a critical role in HIV-1 assembly and release , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[97]  M. Garreau,et al.  Fullerene-like organization of HIV gag-protein shell in virus-like particles produced by recombinant baculovirus. , 1994, Virology.

[98]  J. Hörber,et al.  Sphingolipid–Cholesterol Rafts Diffuse as Small Entities in the Plasma Membrane of Mammalian Cells , 2000, The Journal of cell biology.

[99]  H. Kräusslich,et al.  Intracellular transport of retroviral capsid components. , 1996, Current topics in microbiology and immunology.

[100]  M. Marsh,et al.  Infectious HIV-1 assembles in late endosomes in primary macrophages , 2003, The Journal of cell biology.

[101]  X. Yu,et al.  Identification and characterization of virus assembly intermediate complexes in HIV-1-infected CD4+ T cells. , 1998, Virology.

[102]  R. Wagner,et al.  Proline residues in the HIV-1 NH2-terminal capsid domain: structure determinants for proper core assembly and subsequent steps of early replication. , 2000, Virology.

[103]  P. Spearman,et al.  The I Domain Is Required for Efficient Plasma Membrane Binding of Human Immunodeficiency Virus Type 1 Pr55Gag , 1998, Journal of Virology.

[104]  R C Craven,et al.  Form, function, and use of retroviral gag proteins. , 1991, AIDS.

[105]  V. Vogt,et al.  Mass Determination of Rous Sarcoma Virus Virions by Scanning Transmission Electron Microscopy , 1999, Journal of Virology.

[106]  H. Kräusslich,et al.  Sequential Steps in Human Immunodeficiency Virus Particle Maturation Revealed by Alterations of Individual Gag Polyprotein Cleavage Sites , 1998, Journal of Virology.

[107]  J. Sodroski,et al.  Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[108]  C. Cameron,et al.  Fine mapping and characterization of the Rous sarcoma virus Pr76gag late assembly domain , 1996, Journal of virology.

[109]  E. Hunter,et al.  A single amino acid substitution within the matrix protein of a type D retrovirus converts its morphogenesis to that of a type C retrovirus , 1990, Cell.

[110]  J. Luban,et al.  Basic Residues in Human Immunodeficiency Virus Type 1 Nucleocapsid Promote Virion Assembly via Interaction with RNA , 2000, Journal of Virology.

[111]  M. Resh,et al.  Differential membrane binding of the human immunodeficiency virus type 1 matrix protein , 1996, Journal of virology.

[112]  M. Summers,et al.  NMR structure of the HIV-1 nucleocapsid protein bound to stem-loop SL2 of the psi-RNA packaging signal. Implications for genome recognition. , 2000, Journal of molecular biology.

[113]  V. Vogt Ubiquitin in retrovirus assembly: actor or bystander? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[114]  K. Nagashima,et al.  Elimination of Protease Activity Restores Efficient Virion Production to a Human Immunodeficiency Virus Type 1 Nucleocapsid Deletion Mutant , 2003, Journal of Virology.

[115]  Wesley I. Sundquist,et al.  Structure of the Amino-Terminal Core Domain of the HIV-1 Capsid Protein , 1996, Science.

[116]  S. Fuller,et al.  Organization of HIV-1 Capsid Proteins on a Lipid Monolayer* , 1998, The Journal of Biological Chemistry.

[117]  A. Borsetti,et al.  The C-Terminal Half of the Human Immunodeficiency Virus Type 1 Gag Precursor Is Sufficient for Efficient Particle Assembly , 1998, Journal of Virology.

[118]  S. Höglund,et al.  A Putative α-Helical Structure Which Overlaps the Capsid-p2 Boundary in the Human Immunodeficiency Virus Type 1 Gag Precursor Is Crucial for Viral Particle Assembly , 1998, Journal of Virology.

[119]  Wesley I. Sundquist,et al.  Functional Surfaces of the Human Immunodeficiency Virus Type 1 Capsid Protein , 2003, Journal of Virology.

[120]  A. Kaplan,et al.  Partial inhibition of the human immunodeficiency virus type 1 protease results in aberrant virus assembly and the formation of noninfectious particles , 1993, Journal of virology.

[121]  E. Hunter,et al.  Identification of a minimal HIV-1 gag domain sufficient for self-association. , 2002, Virology.

[122]  M. Ozel,et al.  Spatial visualization of the maturing HIV-1 core and its linkage to the envelope. , 1992, AIDS research and human retroviruses.

[123]  Y. Morikawa,et al.  Complete Inhibition of Human Immunodeficiency Virus Gag Myristoylation Is Necessary for Inhibition of Particle Budding (*) , 1996, The Journal of Biological Chemistry.

[124]  X. Yu,et al.  Mutations in the N-terminal region of human immunodeficiency virus type 1 matrix protein block intracellular transport of the Gag precursor , 1993, Journal of virology.

[125]  J. Yewdell,et al.  Proteasome inhibition interferes with gag polyprotein processing, release, and maturation of HIV-1 and HIV-2. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[126]  E. Freed,et al.  Binding of Human Immunodeficiency Virus Type 1 Gag to Membrane: Role of the Matrix Amino Terminus , 1999, Journal of Virology.

[127]  A. Kaplan,et al.  The activity of the protease of human immunodeficiency virus type 1 is initiated at the membrane of infected cells before the release of viral proteins and is required for release to occur with maximum efficiency , 1994, Journal of virology.

[128]  P. Bieniasz,et al.  HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress , 2001, Nature Medicine.

[129]  Y. Morikawa,et al.  In Vitro Assembly of Human Immunodeficiency Virus Type 1 Gag Protein* , 1999, The Journal of Biological Chemistry.

[130]  I. Jones,et al.  Detection of a Trimeric Human Immunodeficiency Virus Type 1 Gag Intermediate Is Dependent on Sequences in the Matrix Protein, p17 , 1998, Journal of Virology.

[131]  Simon C Watkins,et al.  Equine Infectious Anemia Virus Gag Polyprotein Late Domain Specifically Recruits Cellular AP-2 Adapter Protein Complexes during Virion Assembly , 1998, Journal of Virology.

[132]  S. Goff,et al.  Infectivity of Moloney Murine Leukemia Virus Defective in Late Assembly Events Is Restored by Late Assembly Domains of Other Retroviruses , 2000, Journal of Virology.

[133]  A. Rein,et al.  In Vitro Assembly Properties of Human Immunodeficiency Virus Type 1 Gag Protein Lacking the p6 Domain , 1999, Journal of Virology.

[134]  L. Ratner,et al.  Identification of human immunodeficiency virus type 1 Gag protein domains essential to membrane binding and particle assembly , 1994, Journal of virology.

[135]  M. Wainberg,et al.  A Structurally Disordered Region at the C Terminus of Capsid Plays Essential Roles in Multimerization and Membrane Binding of the Gag Protein of Human Immunodeficiency Virus Type 1 , 2003, Journal of Virology.

[136]  E. Freed,et al.  HIV-1 gag proteins: diverse functions in the virus life cycle. , 1998, Virology.

[137]  M. Resh,et al.  The Late Stage of Human Immunodeficiency Virus Type 1 Assembly Is an Energy-Dependent Process , 2001, Journal of Virology.