The direct extension of ADMM for three-block separable convex minimization models is convergent when one function is strongly convex
暂无分享,去创建一个
[1] J. Moreau. Proximité et dualité dans un espace hilbertien , 1965 .
[2] M. Powell. A method for nonlinear constraints in minimization problems , 1969 .
[3] M. Hestenes. Multiplier and gradient methods , 1969 .
[4] B. Martinet,et al. R'egularisation d''in'equations variationnelles par approximations successives , 1970 .
[5] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .
[6] R. Rockafellar. Monotone Operators and the Proximal Point Algorithm , 1976 .
[7] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[8] R. Glowinski,et al. Numerical Methods for Nonlinear Variational Problems , 1985 .
[9] G. McLachlan. Discriminant Analysis and Statistical Pattern Recognition , 1992 .
[10] John Wright,et al. RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[11] Antonin Chambolle,et al. A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.
[12] Pablo A. Parrilo,et al. Latent variable graphical model selection via convex optimization , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[13] Xiaodong Li,et al. Stable Principal Component Pursuit , 2010, 2010 IEEE International Symposium on Information Theory.
[14] Stephen P. Boyd,et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..
[15] Xiaoming Yuan,et al. Recovering Low-Rank and Sparse Components of Matrices from Incomplete and Noisy Observations , 2011, SIAM J. Optim..
[16] Xiaoming Yuan,et al. Convergence rate and iteration complexity on the alternating direction method of multipliers with a substitution procedure for separable convex programming , 2012 .
[17] Xiaoming Yuan,et al. A Note on the Alternating Direction Method of Multipliers , 2012, J. Optim. Theory Appl..
[18] Bingsheng He,et al. Linearized Alternating Direction Method with Gaussian Back Substitution for Separable Convex Programming , 2011 .
[19] Jonathan Eckstein. Augmented Lagrangian and Alternating Direction Methods for Convex Optimization: A Tutorial and Some Illustrative Computational Results , 2012 .
[20] Daniel Boley,et al. Local Linear Convergence of ADMM on Quadratic or Linear Programs , 2012 .
[21] Caihua Chen,et al. On the Convergence Analysis of the Alternating Direction Method of Multipliers with Three Blocks , 2013 .
[22] Xiaoming Yuan,et al. Local Linear Convergence of the Alternating Direction Method of Multipliers for Quadratic Programs , 2013, SIAM J. Numer. Anal..
[23] Su-In Lee,et al. Node-based learning of multiple Gaussian graphical models , 2013, J. Mach. Learn. Res..
[24] Tianyi Lin,et al. On the Convergence Rate of Multi-Block ADMM , 2014 .
[25] Xiaoming Yuan,et al. A Generalized Proximal Point Algorithm and Its Convergence Rate , 2014, SIAM J. Optim..
[26] Roland Glowinski,et al. On Alternating Direction Methods of Multipliers: A Historical Perspective , 2014, Modeling, Simulation and Optimization for Science and Technology.
[27] Kim-Chuan Toh,et al. A Convergent 3-Block Semi-Proximal ADMM for Convex Minimization Problems with One Strongly Convex Block , 2014, Asia Pac. J. Oper. Res..
[28] Shiqian Ma,et al. On the Global Linear Convergence of the ADMM with MultiBlock Variables , 2014, SIAM J. Optim..
[29] Xiaoming Yuan,et al. A splitting method for separable convex programming , 2015 .
[30] Wotao Yin,et al. On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers , 2016, J. Sci. Comput..
[31] Bingsheng He,et al. The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent , 2014, Mathematical Programming.