A Long-Lived Lunar Core Dynamo

Magnetic Moon It has long been suspected that the Moon once had a core-dynamo magnetic field. Shea et al. (p. 453) describe a lunar basalt brought back by Apollo 11 that records evidence for a strong dynamo on the Moon 3.7 billion years ago. This study, together with a previous study of different lunar rock, implies that a lunar core dynamo existed between 4.2 and 3.7 billion years ago, which extends the known lifetime of the lunar dynamo by 500 million years. Analysis of a lunar basalt sample suggests that a lunar core dynamo existed between 4.2 and 3.7 billion years ago. Paleomagnetic measurements indicate that a core dynamo probably existed on the Moon 4.2 billion years ago. However, the subsequent history of the lunar core dynamo is unknown. Here we report paleomagnetic, petrologic, and 40Ar/39Ar thermochronometry measurements on the 3.7-billion-year-old mare basalt sample 10020. This sample contains a high-coercivity magnetization acquired in a stable field of at least ~12 microteslas. These data extend the known lifetime of the lunar dynamo by 500 million years. Such a long-lived lunar dynamo probably required a power source other than thermochemical convection from secular cooling of the lunar interior. The inferred strong intensity of the lunar paleofield presents a challenge to current dynamo theory.

[1]  W. Adam,et al.  Metal-Oxo and Metal-Peroxo Species in Catalytic Oxidations , 2000 .

[2]  Boris A. Ivanov,et al.  Cratering History and Lunar Chronology , 2006 .

[3]  C. Johnson,et al.  Lunar paleointensity measurements: Implications for lunar magnetic evolution , 2008 .

[4]  F. Richter,et al.  Diffusion Domains Determined by 39 Ar Released During Step Heating , 1991 .

[5]  P. Renne,et al.  Application of deuteron-deuteron (D-D) fusion neutrons to 40Ar/39Ar geochronology. , 2005, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[6]  S. Stewart,et al.  Paleomagnetism of impact spherules from Lonar crater, India and a test for impact-generated fields , 2010 .

[7]  K. Farley,et al.  The influence of artificial radiation damage and thermal annealing on helium diffusion kinetics in apatite , 2009 .

[8]  B. Weiss,et al.  Evidence for shock heating and constraints on Martian surface temperatures revealed by 40Ar/39Ar thermochronometry of Martian meteorites , 2010 .

[9]  P. Wasilewski Magnetic characterization of the new magnetic mineral tetrataenite and its contrast with isochemical taenite , 1988 .

[10]  R. Muller,et al.  Solar and cosmogenic argon in dated lunar impact spherules , 2007 .

[11]  J. T. Ratcliff,et al.  Lunar rotational dissipation in solid body and molten core , 2001 .

[12]  E. A. Lima,et al.  Magnetism on the Angrite Parent Body and the Early Differentiation of Planetesimals , 2008, Science.

[13]  M. Boustie,et al.  On the efficiency of shock magnetization processes , 2008 .

[14]  J. Gee,et al.  The effect of remanence anisotropy on paleointensity estimates: a case study from the Archean Stillwater Complex , 2000 .

[15]  J. Ashby References and Notes , 1999 .

[16]  Renee C. Weber,et al.  Seismic Detection of the Lunar Core , 2011, Science.

[17]  B. Weiss,et al.  Kamacite blocking temperatures and applications to lunar magnetism , 2010 .

[18]  D. Dunlop,et al.  Toward a better understanding of the Lowrie‐Fuller test , 1995 .

[19]  U. Krähenbühl,et al.  CORRELATION BETWEEN ROCK TYPE AND IRRADIATION HISTORY OF APOLLO 11 IGNEOUS ROCKS. , 1970 .

[20]  O. Eugster,et al.  Common asteroid break-up events of eucrites, diogenites, and howardites and cosmic-ray production rates for noble gases in achondrites , 1995 .

[21]  D. Dunlop,et al.  Thermoremanence, anhysteretic remanence and susceptibility of submicron magnetites: Nonlinear field dependence and variation with grain size , 1997 .

[22]  B. Weiss,et al.  A record of impacts preserved in the lunar regolith , 2010 .

[23]  M. Boustie,et al.  Can the lunar crust be magnetized by shock: Experimental groundtruth , 2010 .

[24]  M. Laneuville,et al.  An impact-driven dynamo for the early Moon , 2011, Nature.

[25]  O. Lovera,et al.  Argon retention properties of silicate glasses and implications for 40Ar/39Ar age and noble gas diffusion studies , 2003 .

[26]  M. Richards,et al.  An early lunar core dynamo driven by thermochemical mantle convection , 2003, Nature.

[27]  Yongjae Yu How accurately can NRM/SIRM determine the ancient planetary magnetic field intensity? , 2006 .

[28]  G. Kletetschka,et al.  Analysis of the natural remanent magnetization of rocks by measuring the efficiency ratio through alternating field demagnetization spectra , 2008 .

[29]  G. Turner 40Ar39Ar ages from the lunar maria , 1971 .

[30]  L. Taylor,et al.  Earliest high-Ti volcanism on the Moon: 40Ar-39Ar, Sm-Nd, and Rb-Sr isotopic studies of Group D basalts from the Apollo 11 landing site , 1996 .

[31]  Carle M. Pieters,et al.  Mare Tranquillitatis: Basalt emplacement history and relation to lunar samples , 1996 .

[32]  Shaopeng Huang Surface temperatures at the nearside of the Moon as a record of the radiation budget of Earth’s climate system , 2008 .

[33]  A. Bischoff,et al.  Shock metamorphism as a fundamental process in the evolution of planetary bodies; information from meteorites , 1992 .

[34]  B. Weiss,et al.  Paleomagnetic Records of Meteorites and Early Planetesimal Differentiation , 2010 .

[35]  B. Weiss,et al.  Early Lunar Magnetism , 2007, Science.

[36]  S. Cisowski,et al.  Interacting vs. non-interacting single domain behavior in natural and synthetic samples , 1981 .

[37]  R. Wieler Cosmic-Ray-Produced Noble Gases in Meteorites , 2002 .

[38]  H. Staudigel,et al.  Strength of the geomagnetic field in the Cretaceous Normal Superchron: New data from submarine basaltic glass of the Troodos Ophiolite , 2004 .

[39]  D. Stevenson Planetary Magnetic Fields: Achievements and Prospects , 2010 .

[40]  V. Jelínek Characterization of the magnetic fabric of rocks , 1981 .

[41]  D. McNeill Facies and early diagenetic influence on the depositional magnetization of carbonates , 1997 .

[42]  L. Tauxe,et al.  Acquisition of viscous remanent magnetization , 2006 .

[43]  S. Stewart,et al.  Paleomagnetism of Lonar impact crater, India , 2008 .

[44]  J. Gee,et al.  A linear field dependence of thermoremanence in low magnetic fields , 2007 .

[45]  L. Taylor,et al.  Evolution of the upper mantle of the Earth's Moon: Neodymium and strontium isotopic constraints from high-Ti mare basalts , 1994 .

[46]  P. Schultz,et al.  Electromagnetic properties of impact-generated plasma, vapor and debris , 1998 .

[47]  J. Kirschvink The least-squares line and plane and the analysis of palaeomagnetic data , 1980 .

[48]  P. Renne,et al.  Response to the comment by W.H. Schwarz et al. on Joint determination of 40K decay constants and 40 , 2011 .

[49]  R. Birkebak,et al.  Lunar surface temperatures from apollo 12 , 1971 .

[50]  D. Brownlee,et al.  Catastrophic rupture of lunar rocks: A Monte Carlo simulation , 1975 .

[51]  D. Heslop,et al.  A Preisach method for estimating absolute paleofield intensity under the constraint of using only isothermal measurements: 2. Experimental testing , 2011 .

[52]  P. Renne,et al.  A lattice Boltzmann model for noble gas diffusion in solids: The importance of domain shape and diffusive anisotropy and implications for thermochronometry , 2011 .

[53]  D. Potter,et al.  A theoretical and experimental comparison of the anisotropies of magnetic susceptibility and remanence in rocks and minerals , 1986 .

[54]  B. Meunier Biomimetic oxidations catalyzed by transition metal complexes , 2000 .

[55]  Pierre Rochette,et al.  Toward a robust normalized magnetic paleointensity method applied to meteorites , 2004 .

[56]  D. Heslop,et al.  A Preisach method for estimating absolute paleofield intensity under the constraint of using only isothermal measurements: 1. Theoretical framework , 2011 .

[57]  R. Steiger,et al.  Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology , 1977 .

[58]  Student,et al.  THE PROBABLE ERROR OF A MEAN , 1908 .

[59]  T. Spohn,et al.  Thermal history of the Moon: Implications for an early core dynamo and post-accertional magmatism , 1997 .

[60]  W. Lowrie,et al.  On the alternating field demagnetization characteristics of multidomain thermoremanent magnetization in magnetite , 1971 .

[61]  C. Chapman,et al.  What are the real constraints on the existence and magnitude of the late heavy bombardment , 2007 .

[62]  D. J. Stevenson,et al.  A long-lived lunar dynamo driven by continuous mechanical stirring , 2011, Nature.

[63]  Yongjae Yu Paleointensity determination using anhysteretic remanence and saturation isothermal remanence , 2010 .

[64]  N. Artemieva,et al.  Antipodal effects of lunar basin-forming impacts: Initial 3D simulations and comparisons with observations , 2008 .

[65]  Ralf Jaumann,et al.  Ages of Mare Basalts on the Lunar Nearside: A Synthesis , 2000 .

[66]  Tomas Kohout,et al.  An empirical scaling law for acquisition of thermoremanent magnetization , 2004 .

[67]  P. Renne,et al.  Argon diffusion in plagioclase and implications for thermochronometry: A case study from the Bushveld Complex, South Africa , 2009 .

[68]  J. Geiss,et al.  Absolute time scale of lunar mare formation and filling , 1977, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.