Nanobubbles within a microbubble: synthesis and self-assembly of hollow manganese silicate and its metal-doped derivatives.

We developed a surface-catalyzed dual templating strategy to synthesize and organize hollow spheres of manganese silicate as well as a wide variety of its metal-doped structural derivatives (where metal dopant = Fe, Co, Ni, Cu, Y, La, Ce, Nd, Eu, Gd, Er, and Yb). The size of hollow spheres obtained is in the range of only 7-9 nm. In addition, the resultant nanospheres can also be formed into an even greater hollow sphere, giving rise to a "bubbles within a bubble" assemblage in the submicrometer regime (e.g., ∼200 to 270 nm). The hierarchical hollow structures of this type were further tested for catalytic degradation (or decomposition) of organic dyes and used as solid precursors for transformative synthesis of other silicon-based functional hollow materials.

[1]  S. Dou,et al.  Robust superhydrophobicity of hierarchical ZnO hollow microspheres fabricated by two-step self-assembly , 2013, Nano Research.

[2]  L. Nazar,et al.  Hydrothermal Synthesis and Electrochemical Properties of Li2CoSiO4/C Nanospheres , 2013 .

[3]  Boseong Kwon,et al.  Formation of manganese oxide shells on silica spheres with various crystal structures using surfactants for the degradation of methylene blue dye , 2013 .

[4]  Lijing Guo,et al.  Facile carbonaceous microsphere templated synthesis of Co3O4 hollow spheres and their electrochemical performance in supercapacitors , 2013, Nano Research.

[5]  Chengchao Li,et al.  Coordination chemistry and antisolvent strategy to rare-earth solid solution colloidal spheres. , 2012, Journal of the American Chemical Society.

[6]  D. Lohse,et al.  A deliberation on nanobubbles at surfaces and in bulk. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[7]  Zhiyu Wang,et al.  Metal Oxide Hollow Nanostructures for Lithium‐ion Batteries , 2012, Advanced materials.

[8]  I. Arčon,et al.  Manganese Functionalized Silicate Nanoparticles as a Fenton‐Type Catalyst for Water Purification by Advanced Oxidation Processes (AOP) , 2012 .

[9]  Itaru Honma,et al.  Ultrathin nanosheets of Li2MSiO4 (M = Fe, Mn) as high-capacity Li-ion battery electrode. , 2012, Nano letters.

[10]  S. Suib,et al.  Direct Sonochemical Synthesis of Manganese Octahedral Molecular Sieve (OMS-2) Nanomaterials Using Cosolvent Systems, Their Characterization, and Catalytic Applications , 2012 .

[11]  H. Zeng,et al.  Simultaneous Chemical Modification and Structural Transformation of Stöber Silica Spheres for Integration of Nanocatalysts , 2012 .

[12]  Howard A Stone,et al.  Coated gas bubbles for the continuous synthesis of hollow inorganic particles. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[13]  X. Gong,et al.  Yolk‐like Micro/Nanoparticles with Superparamagnetic Iron Oxide Cores and Hierarchical Nickel Silicate Shells , 2011 .

[14]  N. N. Tušar,et al.  Manganese-Containing Porous Silicates: Synthesis, Structural Properties and Catalytic Applications , 2011 .

[15]  Paul T. Williams,et al.  Hydrothermal reactions of sodium formate and sodium acetate as model intermediate products of the sodium hydroxide-promoted hydrothermal gasification of biomass , 2010 .

[16]  W. Cai,et al.  A versatile method for controlled synthesis of porous hollow spheres. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[17]  Jun Wang,et al.  A facile route to prepare hierarchical magnetic cobalt–silica hollow nanospheres with tunable shell thickness , 2010 .

[18]  F. Jiao,et al.  Nanostructured manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts. , 2010, Chemical communications.

[19]  W. Ducker Contact angle and stability of interfacial nanobubbles. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[20]  L. Archer,et al.  Hollow Micro‐/Nanostructures: Synthesis and Applications , 2008 .

[21]  Shudong Zhang,et al.  Hematite Hollow Spheres with a Mesoporous Shell: Controlled Synthesis and Applications in Gas Sensor and Lithium Ion Batteries , 2008 .

[22]  J. Figueiredo,et al.  Manganese oxide OMS-2 as an effective catalyst for total oxidation of ethyl acetate , 2007 .

[23]  W. Saenger,et al.  Where Water Is Oxidized to Dioxygen: Structure of the Photosynthetic Mn4Ca Cluster , 2006, Science.

[24]  Changzheng Wu,et al.  Synthesis of New‐Phased VOOH Hollow “Dandelions” and Their Application in Lithium‐Ion Batteries , 2006 .

[25]  M. Lü,et al.  Solution-phase synthesis of spherical zinc sulfide nanostructures. , 2006, Langmuir.

[26]  Thomas M. McCollom,et al.  Experimental study of the hydrothermal reactivity of organic acids and acid anions: II. Acetic acid, acetate, and valeric acid , 2003 .

[27]  Yadong Li,et al.  ZnSe semiconductor hollow microspheres. , 2003, Angewandte Chemie.

[28]  S. Suib,et al.  Efficient, Catalytic, Aerobic Oxidation of Alcohols with Octahedral Molecular Sieves. , 2001, Angewandte Chemie.

[29]  A. Galwey,et al.  Kinetic and thermodynamic study of the non-isothermal decompositions of cobalt malonate dihydrate and of cobalt hydrogen malonate dihydrate , 2000 .

[30]  A. Galwey,et al.  Kinetic and thermodynamic studies of the non-isothermal decompositions of nickel malonate dihydrate and nickel hydrogen malonate dihydrate , 1998 .

[31]  M. A. Mohamed Non-isothermal dehydration and decomposition of manganese(II) malonate dihydrate , 1994 .

[32]  M. A. Mohamed,et al.  Kinetic and mechanistic study of the non-isothermal decomposition of manganese(II) acetate tetrahydrate , 1994 .

[33]  Uday S. Racherla,et al.  Efficient manganese catalysts for low-temperature bleaching , 1994, Nature.

[34]  M. A. Mohamed,et al.  The non-isothermal decomposition of cobalt acetate tetrahydrate , 1994 .

[35]  M. A. Mohamed,et al.  Non-isothermal decomposition of nickel acetate tetrahydrate , 1993 .

[36]  S. Suib,et al.  Manganese Oxide Octahedral Molecular Sieves: Preparation, Characterization, and Applications , 1993, Science.

[37]  Minoru Tomozawa,et al.  Diffusion of Water into Silica Glass at Low Temperature , 1989 .

[38]  R. Hancock,et al.  The Chelate, Cryptate and Macrocyclic Effects , 1988 .

[39]  B. Cervelle Rock forming minerals, 2e édition, Volume 1A (orthosilicates) et IB (Disilicates and Ring Silicates), par W.A. Deer, R.A. Howie et J. Zussman , 1987 .

[40]  S. E. Drummond,et al.  Thermal decarboxylation of acetate. Part I. The kinetics and mechanism of reaction in aqueous solution , 1986 .

[41]  F. L. Galeener,et al.  Longitudinal Optical Vibrations in Glasses: GeO 2 and SiO 2 , 1976 .

[42]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .

[43]  H. J. Bernstein,et al.  THE VIBRATIONAL SPECTRA OF THE FORMATE, ACETATE, AND OXALATE IONS , 1956 .

[44]  R. J. P. Williams,et al.  637. The stability of transition-metal complexes , 1953 .