Glass-ceramics with internally crystallized pyrochlore for the immobilization of uranium wastes

[1]  Tao Wei,et al.  CaZrTi 2 O 7 zirconolite synthesis: From ceramic to glass‐ceramic , 2019, International Journal of Applied Ceramic Technology.

[2]  A. Xu,et al.  Hot isostatically pressed Y2Ti2O7 and Gd2Ti2O7 pyrochlore glass-ceramics as potential waste forms for actinide immobilization , 2019, Journal of the European Ceramic Society.

[3]  Zhaoming Zhang,et al.  Structural and spectroscopic investigations on the crystallization of uranium brannerite phases in glass , 2018 .

[4]  Yingjie Zhang,et al.  A new method for production of glass-Ln2Ti2O7 pyrochlore (Ln = Gd, Tb, Er, Yb) , 2017 .

[5]  Yingjie Zhang,et al.  Phase evolution from Ln2Ti2O7 (Ln=Y and Gd) pyrochlores to brannerites in glass with uranium incorporation , 2017 .

[6]  Yingjie Zhang,et al.  Preparation of Y2Ti2O7 pyrochlore glass-ceramics as potential waste forms for actinides: The effects of processing conditions , 2017 .

[7]  Yingjie Zhang,et al.  Development of brannerite glass-ceramics for the immobilization of actinide-rich radioactive wastes , 2017 .

[8]  Yingjie Zhang,et al.  Zirconolite glass-ceramics for plutonium immobilization: The effects of processing redox conditions on charge compensation and durability , 2017 .

[9]  J. McCloy,et al.  Glass-ceramics for nuclear-waste immobilization , 2017 .

[10]  E. Vance,et al.  Crystal chemistry and structures of uranium-doped gadolinium zirconates , 2013 .

[11]  M. Strehle X-ray photoelectron spectroscopy (XPS) study of single crystal UO2 and U3O8 on r-plane sapphire and yttrium stabilized zirconium (YSZ) substrates , 2011 .

[12]  D. Caurant,et al.  Glass-ceramic nuclear waste forms obtained by crystallization of SiO2-Al2O3-CaO-ZrO2-TiO2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th): Study of the crystallization from the surface , 2010 .

[13]  M. Mayes,et al.  Impact of uranyl-calcium-carbonato complexes on uranium(VI) adsorption to synthetic and natural sediments. , 2010, Environmental science & technology.

[14]  R. Wirth,et al.  Alpha-irradiation effects in SiO2 , 2008 .

[15]  J. Marra,et al.  Glass fabrication and product consistency testing of lanthanide borosilicate glass for plutonium disposition , 2007 .

[16]  Eric M. Pierce,et al.  Accelerated weathering of high-level and plutonium-bearing lanthanide borosilicate waste glasses under hydraulically unsaturated conditions , 2007 .

[17]  N. Baffier,et al.  Crystallization of neodymium-rich phases in silicate glasses developed for nuclear waste immobilization , 2006 .

[18]  G. C. Allen,et al.  Reduction of U(VI) to U(IV) on the surface of magnetite , 2005 .

[19]  N. Baffier,et al.  Glass–ceramic nuclear waste forms obtained from SiO2–Al2O3–CaO–ZrO2–TiO2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th): study of internal crystallization , 2004 .

[20]  A. Boccaccini,et al.  Borosilicate and lead silicate glass matrix composites containing pyrochlore phases for nuclear waste encapsulation , 2004 .

[21]  K. Sun,et al.  The order-disorder transition in ion-irradiated pyrochlore , 2003 .

[22]  Thierry Advocat,et al.  GLASS-CERAMICS IN A COLD-CRUCIBLE MELTER : THE OPTIMUM COMBINATION FOR GREATER WASTE PROCESSING EFFICIENCY , 2003 .

[23]  S. Conradson,et al.  Spectroscopic Investigations of the Structural Phase Transition in Gd2(Ti1-yZry)2O7 Pyrochlores , 2002 .

[24]  S. Haile,et al.  Connection between oxygen-ion conductivity of pyrochlore fuel-cell materials and structural change with composition and temperature , 2000 .

[25]  R. Taylor,et al.  The immobilization of high level radioactive wastes using ceramics and glasses , 1997 .

[26]  D. Shuh,et al.  EXAFS spectroscopic studies of uranium(VI) oxide precipitates , 1996 .

[27]  W. Lutze,et al.  Development of glass ceramics for the incorporation of fission products , 1976 .

[28]  Tao Wei,et al.  Phase evolution and microstructure analysis of CaZrTi 2 O 7 zirconolite in glass , 2018 .

[29]  M. Ferid,et al.  Relationship between the structural characteristics and photoluminescent properties of LnEuTi2O7 (Ln=Gd and Y) pyrochlores , 2016 .

[30]  E. Vance,et al.  Pyrochlore based glass-ceramics for the immobilization of actinide-rich nuclear wastes: From concept to reality , 2013 .

[31]  Gregg J. Lumetta,et al.  Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment , 2011 .

[32]  E. Vance,et al.  HIPed Tailored Pyrochlore-Rich Glass-Ceramic Waste Forms for the Immobilization of Nuclear Waste , 2008 .

[33]  J. L. Steele,et al.  Dissolution kinetics of pyrochlore ceramics for the disposition of plutonium , 2006 .

[34]  William E. Lee,et al.  An Introduction to Nuclear Waste Immobilisation , 2005 .

[35]  P. Hayward,et al.  Development of Sphene-Based Glass Ceramics Tailored for Canadian Waste Disposal Conditions , 1981 .