Studies of systematic uncertainties for Simons Observatory: detector array effects

In this proceeding, we present studies of instrumental systematic effects for the Simons Obsevatory (SO) that are associated with the detector system and its interaction with the full SO experimental systems. SO will measure the Cosmic Microwave Background (CMB) temperature and polarization anisotropies over a wide range of angular scales in six bands with bandcenters spanning from 27 GHz to 270 GHz. We explore effects including intensity-to-polarization leakage due to coupling optics, bolometer nonlinearity, uncalibrated gain variations of bolometers, and readout crosstalk. We model the level of signal contamination, discuss proposed mitigation schemes, and present instrument requirements to inform the design of SO and future CMB projects.

[1]  P. A. R. Ade,et al.  MEASUREMENTS OF E-MODE POLARIZATION AND TEMPERATURE-E-MODE CORRELATION IN THE COSMIC MICROWAVE BACKGROUND FROM 100 SQUARE DEGREES OF SPTPOL DATA , 2014, 1411.1042.

[2]  M. Lueker,et al.  A Study of Al–Mn Transition Edge Sensor Engineering for Stability , 2014 .

[3]  I. Maasilta,et al.  Complex impedance, responsivity and noise of transition-edge sensors: Analytical solutions for two- and three-block thermal models , 2012, 1205.5693.

[4]  Edward J. Wollack,et al.  Advanced ACTPol Cryogenic Detector Arrays and Readout , 2015, 1510.02809.

[5]  Sara Michelle Simon Cosmic Microwave Background Polarimetry with ABS and ACT: Instrumental Design, Characterization, and Analysis , 2016 .

[6]  M. Nolta,et al.  Modulation of cosmic microwave background polarization with a warm rapidly rotating half-wave plate on the Atacama B-Mode Search instrument. , 2013, The Review of scientific instruments.

[7]  Kendrick M. Smith Pure pseudo-Cℓ estimators for CMB B-modes , 2006 .

[8]  Peter A. R. Ade,et al.  The Atacama Cosmology Telescope: CMB polarization at 200 < ℓ < 9000 , 2014, 1405.5524.

[9]  Joy Didier,et al.  Studies of systematic uncertainties for Simons Observatory: polarization modulator related effects , 2018, Astronomical Telescopes + Instrumentation.

[10]  Albert Stebbins,et al.  A Probe of Primordial Gravity Waves and Vorticity , 1997 .

[11]  Aamir Ali,et al.  Development of calibration strategies for the Simons Observatory , 2018, Astronomical Telescopes + Instrumentation.

[12]  Shaul Hanany,et al.  CMB-S4 Technology Book, First Edition , 2017, 1706.02464.

[13]  U. Seljak,et al.  Signature of gravity waves in polarization of the microwave background , 1996, astro-ph/9609169.

[14]  P. A. R. Ade,et al.  SPT-3G: a next-generation cosmic microwave background polarization experiment on the South Pole telescope , 2014, Astronomical Telescopes and Instrumentation.

[15]  Kent D. Irwin,et al.  Publisher's Note: “Modulation of cosmic microwave background polarization with a warm rapidly rotating half-wave plate on the Atacama B-Mode Search instrument” [Rev. Sci. Instrum. 85, 024501 (2014)] , 2014 .

[16]  Brian Keating,et al.  BoloCalc: a sensitivity calculator for the design of Simons Observatory , 2018, Astronomical Telescopes + Instrumentation.

[17]  Britt Reichborn-Kjennerud,et al.  Intensity-coupled Polarization in Instruments with a Continuously Rotating Half-wave Plate , 2017, The Astrophysical Journal.

[18]  Kent D. Irwin,et al.  Microwave SQUID multiplexer , 2004 .

[19]  A. Gilbert,et al.  A Measurement of the Cosmic Microwave Background B-mode Polarization Power Spectrum at Subdegree Scales from Two Years of polarbear Data , 2017, 1705.02907.

[20]  C. B. Netterfield,et al.  Design of 280 GHz feedhorn-coupled TES arrays for the balloon-borne polarimeter SPIDER , 2016, Astronomical Telescopes + Instrumentation.

[21]  J. Zmuidzinas,et al.  Crosstalk Reduction for Superconducting Microwave Resonator Arrays , 2012, IEEE Transactions on Microwave Theory and Techniques.

[22]  David Alonso,et al.  The Python Sky Model: software for simulating the Galactic microwave sky , 2016, 1608.02841.

[23]  Adrian T. Lee,et al.  Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements. , 2011, The Review of scientific instruments.

[24]  Nicolas Ponthieu,et al.  CMB polarization systematics due to beam asymmetry: Impact on inflationary science , 2007, 0709.1513.

[25]  Federico Stivoli,et al.  Framework for performance forecasting and optimization of CMB B -mode observations in the presence of astrophysical foregrounds , 2011, 1105.3859.

[26]  Adrian T. Lee,et al.  Measurements of the Temperature and E-mode Polarization of the CMB from 500 Square Degrees of SPTpol Data , 2017, 1707.09353.

[27]  Julian Borrill,et al.  Performance of a continuously rotating half-wave plate on the POLARBEAR telescope , 2017, 1702.07111.

[28]  M. Hasselfield,et al.  The Effects of Bandpass Variations on Foreground Removal Forecasts for Future CMB Experiments , 2018, The Astrophysical Journal.

[29]  Kent D. Irwin,et al.  Transition-Edge Sensors , 2005 .

[30]  Radek Stompor,et al.  Publisher's Note: Framework for performance forecasting and optimization of CMB B-mode observations in the presence of astrophysical foregrounds [Phys. Rev. D 84, 063005 (2011)] , 2011 .

[31]  Christian Enss,et al.  Cryogenic particle detection , 2005 .

[32]  R. Stompor,et al.  Polarized CMB power spectrum estimation using the pure pseudo-cross-spectrum approach , 2009, 0903.2350.

[33]  Aritoki Suzuki,et al.  Multichroic Bolometric Detector Architecture for Cosmic Microwave Background Polarimetry Experiments , 2013 .

[34]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[35]  G. P. Teply,et al.  POLARBEAR-2: an instrument for CMB polarization measurements , 2016, Astronomical Telescopes + Instrumentation.

[36]  G. Hilton,et al.  Microwave SQUID Multiplexer Demonstration for Cosmic Microwave Background Imagers. , 2017, Applied physics letters.

[37]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[38]  Matias Zaldarriaga,et al.  Gravitational lensing effect on cosmic microwave background polarization , 1998, astro-ph/9803150.

[39]  Radek Stompor,et al.  Forecasting performance of CMB experiments in the presence of complex foreground contaminations , 2016 .

[40]  Johannes Hubmayr,et al.  The design and characterization of wideband spline-profiled feedhorns for Advanced ACTPol , 2016, Astronomical Telescopes + Instrumentation.

[41]  Michele Limon,et al.  CLASS: the cosmology large angular scale surveyor , 2014, Astronomical Telescopes and Instrumentation.