Optimal design for polymer extrusion. Part I : Sensitivity analysis for nonlinear steady-state systems

We present a general framework to obtain analytical design sensitivities for steady-state nonlinear systems where special emphasis is given to design variables that define prescribed boundary conditions. The sensitivities are derived for a general response functional using both the direct and adjoint methods and are compared to show that the two sensitivity analysis methods yield identical expressions. Both adjoint and direct sensitivities for the generalized Hele-Shaw system, which models the flow of purely viscous non-Newtonian fluids through thin cavities, are obtained using weak formulations and then discretized for the finite element analysis. These sensitivities are used with numerical optimization to design polymer sheeting dies with minimum pressure drop and reduced velocity variation across the die exit.

[1]  Daniel A. Tortorelli,et al.  A systematic approach to shape sensitivity analysis , 1993 .

[2]  Daniel A. Tortorelli,et al.  Optimal design of nonlinear parabolic systems. Part II: Variable spatial domain with applications to casting optimization , 1994 .

[3]  R. B. Haber,et al.  A new variational approach to structural shape design sensitivity analysis , 1987 .

[4]  James F. Carley,et al.  Flow of Melts in ``Crosshead''‐Slit Dies; Criteria for Die Design , 1954 .

[5]  C. L. Tucker,et al.  Fundamentals of Computer Modeling for Polymer Processing , 1989 .

[6]  Daniel A. Tortorelli,et al.  Optimal design of polymer sheeting dies , 1995 .

[7]  C. L. Tucker,et al.  SIMULATION OF COMPRESSION MOLDING FOR FIBER-REINFORCED THERMOSETTING POLYMERS. , 1984 .

[8]  Robert B. Haber,et al.  First‐order design sensitivities for transient conduction problems by an adjoint method , 1989 .

[9]  Daniel A. Tortorelli,et al.  Optimal design for polymer extrusion. Part II: Sensitivity analysis for weakly-coupled nonlinear steady-state systems , 1998 .

[10]  Daniel A. Tortorelli,et al.  Optimal design of nonlinear parabolic systems. Part I: Fixed spatial domain with applications to process optimization , 1994 .

[11]  Daniel A. Tortorelli,et al.  Sensitivity analysis for non‐linear constrained elastostatic systems , 1992 .

[12]  Daniel A. Tortorelli Design Sensitivity Analysis for Coupled Systems and Their Application to Concurrent Engineering , 1993 .

[13]  Douglas E. Smith,et al.  Analysis and sensitivity analysis for polymer injection and compression molding , 1998 .

[14]  Z. Tadmor,et al.  Principles of Polymer Processing , 1979 .

[15]  R. Bird Dynamics of Polymeric Liquids , 1977 .

[16]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[17]  R. Haber,et al.  Design sensitivity analysis for rate-independent elastoplasticity , 1993 .

[18]  Erik Lund,et al.  Concurrent Engineering Design Optimization in a CAD Environment , 1993 .

[19]  Daniel A. Tortorelli,et al.  Optimal riser design for metal castings , 1995 .

[20]  R. Haftka,et al.  Elements of Structural Optimization , 1984 .

[21]  Ren-Jye Yang,et al.  Shape optimal design of an engine exhaust manifold , 1993 .

[22]  Chaim Gutfinger,et al.  Flow analysis network (FAN)—A method for solving flow problems in polymer processing , 1974 .

[23]  Vincent Legat,et al.  Die Design - An Implicit Formulation for the Inverse Problem , 1993 .

[24]  S. F. Shen,et al.  A finite-element/finite-difference simulation of the injection-molding filling process , 1980 .

[25]  Katsuhiko Ito,et al.  Uniformity of flow from sheeting dies , 1971 .

[26]  Edward J. Haug,et al.  Design Sensitivity Analysis of Structural Systems , 1986 .

[27]  H. Henning Winter,et al.  Design of dies for the extrusion of sheets and annular parisons: The distribution problem , 1986 .

[28]  K. Choi,et al.  A study of design velocity field computation for shape optimal design , 1994 .

[29]  Daniel A. Tortorelli,et al.  Inverse heat conduction problem solutions via second-order design sensitivities and newton's method , 1996 .

[30]  Ren-Jye Yang,et al.  Optimal topology design using linear programming , 1994 .

[31]  Ashok D. Belegundu,et al.  Lagrangian Approach to Design Sensitivity Analysis , 1985 .

[32]  D. Tortorelli,et al.  Tangent operators and design sensitivity formulations for transient non‐linear coupled problems with applications to elastoplasticity , 1994 .

[33]  I. H. Öğüş,et al.  NATO ASI Series , 1997 .

[34]  Ta-Jo Liu,et al.  A unified lubrication approach for the design of a coat-hanger die , 1994 .

[35]  Optimal design and analysis for polymer extrusion and molding , 1996 .

[36]  D. Tortorelli,et al.  Design sensitivity analysis: Overview and review , 1994 .

[37]  Creto Augusto Vidal,et al.  The consistent tangent operator for design sensitivity analysis of history-dependent response , 1991 .

[38]  Raphael T. Haftka,et al.  Recent developments in structural sensitivity analysis , 1989 .