Three-dimensional active imaging with maximum depth range.

In traditional three-dimensional (3D) active imaging methods, the detection depth range is observed to increase linearly with the detection time, and the intensity information was not fully utilized. However, by encoding the relative values into pseudovalues, the intensity information was fully utilized, and we found the maximum detection depth range increases exponentially with the detection time. Furthermore, we present a 3D imaging system capable of exponentially expanding the detection depth range. A 3D scene reconstruction was undertaken with the targets placed at a distance of 600-1100 m. Experimental results indicate that the method expands the detection depth range exponentially without distance resolution loss as compared with the conventional method.