Estimating regression coefficients using weighted bootstrap with probability

In this paper we propose a new Weighted Bootstrap with Probability (WBP). The basic idea of the proposed bootstrap technique is to do re-sampling with probabilities. These probabilities become the control mechanism for getting good estimates when the original data set contain multiple outliers. Numerical examples and simulation study are carried out to evaluate the performance of the WBP estimates as compared to the Bootstrap 1 and Diagnostic-Before Bootstrap estimates. The results of the study signify that the WBP method is more efficient than the other two methods.

[1]  J. Ulmanis,et al.  Analysis of the impact of information and communication technologies on the development of Latvia as a new member of the EU , 2007 .

[2]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[3]  R. Zamar,et al.  Bootstrapping robust estimates of regression , 2002 .

[4]  U. Ligges Review of An R and S-PLUS companion to applied regression by J. Fox, Sage Publications, Thousand Oaks, California 2002 , 2003 .

[5]  Jun Yeob Song,et al.  Construction and operation of a knowledge base on intelligent machine tools , 2008 .

[6]  Kesar Singh,et al.  Breakdown theory for bootstrap quantiles , 1998 .

[7]  M. Salibian-Barrera,et al.  Bootstrapping MM-estimators for linear regression with fixed designs☆ , 2006 .

[8]  J. Fox Bootstrapping Regression Models Appendix to An R and S-PLUS Companion to Applied Regression , 2002 .

[9]  John Law,et al.  Robust Statistics—The Approach Based on Influence Functions , 1986 .

[10]  Zainodin Hj. Jubok,et al.  Multiple linear regression in forecasting the number of asthmatics , 2008 .

[11]  David M. Sebert,et al.  A clustering algorithm for identifying multiple outliers in linear regression , 1998 .

[12]  D. Freedman Bootstrapping Regression Models , 1981 .

[13]  Conceição Amado,et al.  Robust Bootstrap with Non Random Weights Based on the Influence Function , 2004 .

[14]  M. Masoom Ali,et al.  Bootstrapping Regression Residuals , 2005 .

[15]  J. R. Koehler,et al.  Modern Applied Statistics with S-Plus. , 1996 .

[16]  J. Shao,et al.  The jackknife and bootstrap , 1996 .

[17]  H. Midi Bootstrap Methods in a Class of Non-LinearRegression Models , 2000 .

[18]  Azami Zaharim,et al.  An evaluation of test statistics for detecting level change in BL(1,1,1,1) models , 2007 .

[19]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[20]  Zainodin Hj. Jubok,et al.  Effect of water parameters on ephemeroptera abundance in Telipok River, Sabah Malaysia , 2008 .

[21]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[22]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[23]  Arnold J. Stromberg,et al.  Robust covariance estimates based on resampling , 1997 .

[24]  Stefan Van Aelst,et al.  Fast and robust bootstrap for LTS , 2005, Comput. Stat. Data Anal..