Immobilisation of Prototype Fast Reactor raffinate in a barium borosilicate glass matrix

[1]  James E. Shelby,et al.  Introduction to Glass Science and Technology , 2020 .

[2]  N. Hyatt,et al.  Alteration layer formation of Ca- and Zn-oxide bearing alkali borosilicate glasses for immobilisation of UK high level waste: A vapour hydration study , 2016 .

[3]  N. Hyatt,et al.  The initial dissolution rates of simulated UK Magnox–ThORP blend nuclear waste glass as a function of pH, temperature and waste loading , 2015, Mineralogical Magazine.

[4]  N. Hyatt,et al.  Effect of Zn- and Ca-oxides on the structure and chemical durability of simulant alkali borosilicate glasses for immobilisation of UK high level wastes , 2015 .

[5]  S. Gin,et al.  The fate of silicon during glass corrosion under alkaline conditions: A mechanistic and kinetic study with the International Simple Glass , 2015 .

[6]  R. Short Phase Separation and Crystallisation in UK HLW Vitrified Products , 2014 .

[7]  N. Hyatt,et al.  Thermal treatment of simulant plutonium contaminated materials from the Sellafield site by vitrification in a blast-furnace slag , 2014 .

[8]  N. Hyatt,et al.  Dissolution of UK high-level waste glass under simulated hyperalkaline conditions of a colocated geological disposal facility , 2013 .

[9]  N. Hyatt,et al.  Formation of alteration products during dissolution of vitrified ILW in a high-pH calcium-rich solution , 2013 .

[10]  S. Gin,et al.  Antagonist effects of calcium on borosilicate glass alteration , 2013 .

[11]  R. Odoj,et al.  Characterization ofRadioactive Wastes Incorporated in a Cement Matrix , 2013 .

[12]  N. Hyatt,et al.  Vitrification of UK intermediate level radioactive wastes arising from site decommissioning. Initial laboratory trials , 2013 .

[13]  N. Hyatt,et al.  Chemical durability of vitrified wasteforms: effects of pH and solution composition , 2012, Mineralogical Magazine.

[14]  M. Zitnik,et al.  The effects of γ-radiation on model vitreous wasteforms intended for the disposal of intermediate and high level radioactive wastes in the United Kingdom , 2012 .

[15]  N. Hyatt,et al.  Vitrification of UK intermediate level radioactive wastes arising from site decommissioning : property modelling and selection of candidate host glass compositions , 2012 .

[16]  N. Hyatt,et al.  Mechanical properties of nuclear waste glasses , 2011 .

[17]  Liqiu Wang,et al.  Advances in Transport Phenomena , 2010 .

[18]  S. Weisenburger,et al.  Sulfur incorporation in high level nuclear waste glass: A S K-edge XAFS investigation , 2009 .

[19]  C. Wilding,et al.  Glass development for vitrification of Wet Intermediate Level Waste (WILW) from decommissionning of the Hinkley Point ‘A’ Site , 2008 .

[20]  Neil B. Milestone,et al.  The Use of Activated Slags as Immobilisation Matrices for ILW , 2007 .

[21]  B. Parkinson Influence of Composition on Structure and Caesium Volatilisation from Glasses for HLW Confinement , 2007 .

[22]  C. P. Kaushik,et al.  Barium borosilicate glass – a potential matrix for immobilization of sulfate bearing high-level radioactive liquid waste , 2006 .

[23]  K. F. Langley,et al.  Immobilization of Fast Reactor First Cycle Raffinate , 2003 .

[24]  E. W. Miller,et al.  Cementitious Systems for Encapsualation of Intermediate Level Waste , 2003 .

[25]  F. P. Glasser,et al.  Mineralogical aspects of cement in radioactive waste disposal , 2001, Mineralogical Magazine.

[26]  Chang Ho Oh,et al.  Hazardous and radioactive waste treatment technologies handbook , 2001 .

[27]  R. Taylor,et al.  The immobilization of high level radioactive wastes using ceramics and glasses , 1997 .

[28]  Fredrik P. Glasser,et al.  Application of portland cement-based materials to radioactive waste immobilization , 1992 .

[29]  M. Asano,et al.  Vaporization of alkali borosilicate glasses , 1989 .

[30]  B. Grambow,et al.  Corrosion Behaviour of British Magnox Waste Glass in Pure Water , 1988 .

[31]  N. Bibler Radiolytic gas production from concrete containing Savannah River Plant waste , 1978 .